整数問題 チャレンジ - 質問解決D.B.(データベース)

整数問題 チャレンジ

問題文全文(内容文):
自然数$(m,n)$をすべて求めよ。
$3^n-2^{n+1}=m^2$
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$(m,n)$をすべて求めよ。
$3^n-2^{n+1}=m^2$
投稿日:2019.10.12

<関連動画>

難関大学が好きなパターンの整数問題! #Shorts #ずんだもん #勉強 #数学

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
abcd=a+b+c+d
を満たす正の整数a,b,c,dをすべて求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(7)〜n進法と割り算の余り

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (7)整数Zはn進法で表すとk+1桁であり、$n^k$の位の数が4、$n^i$ (1≦i≦k-1)の位の数が0、$n^0$の位の数が1となる。ただし、nはn≧3を満たす整数、kはk≧2を満たす整数とする。
(i)k=3とする。Zをn+1で割った時の余りは$\boxed{\ \ テ\ \ }$である。
(ii)Zがn-1で割り切れるときのnの値をすべて求めると$\boxed{\ \ ト\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

【数A】整数の性質:aを自然数とする。a+2は3の倍数であり、a+4は7の倍数であるとき、a+11は21の倍数であることを証明しましょう。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数A#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを自然数とする。a+2は3の倍数であり、a+4は7の倍数であるとき、a+11は21の倍数であることを証明しなさい。
この動画を見る 

整数問題 昭和学院秀英

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
n+7が11の倍数でn+11が7の倍数となる正の整数nの中で最小となるnの値を求めよ。
2024昭和学院秀英高等学校
この動画を見る 

整数問題 開明高校

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{3}{n+1}$が整数となるような整数nの値をすべて求めよ。
開明高等学校
この動画を見る 
PAGE TOP