福田の数学〜東北大学2023年理系第6問〜線分の通過範囲の面積 - 質問解決D.B.(データベース)

福田の数学〜東北大学2023年理系第6問〜線分の通過範囲の面積

問題文全文(内容文):
6 関数f(x)=12x46x+1について、以下の問いに答えよ。
(1)曲線y=f(x)の接線で、傾きが1であり、かつ接点のx座標が正であるものの方程式を求めよ。
(2)座標平面上の2点P(x, f(x)), Q(x+1, f(x)+1)を考える。xが0≦x≦2の範囲を動くとき、線分PQが通過してできる図形Sの概形を描け。またSの面積を求めよ。

2023東北大学理系過去問
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
6 関数f(x)=12x46x+1について、以下の問いに答えよ。
(1)曲線y=f(x)の接線で、傾きが1であり、かつ接点のx座標が正であるものの方程式を求めよ。
(2)座標平面上の2点P(x, f(x)), Q(x+1, f(x)+1)を考える。xが0≦x≦2の範囲を動くとき、線分PQが通過してできる図形Sの概形を描け。またSの面積を求めよ。

2023東北大学理系過去問
投稿日:2023.05.22

<関連動画>

福田の数学〜大阪大学2023年文系第2問〜対数関数と3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
2 正の実数a, xに対して
y=(log12x)3+alog2x(log4x3)
とする。
(1)t=log2xとするとき、yをa, tを用いて表せ。
(2)xが12≦x≦8の範囲を動くとき、yの最大値Mをaを用いて表せ。

2023大阪大学文系過去問
この動画を見る 

京都大 関数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b実数
f(x)=ax+bx2+x+1

すべての実数xにたいして不等式

f(x)f(x)32f(x)2+2が成り立つ(a,b)を図示せよ

出典:2014年京都大学 過去問
この動画を見る 

【数Ⅲ】【微分とその応用】微分計算の基本1 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
微分しなさい
y=(x+2)(x1)(x5)
y=(x3x)(x2+1)(x1)
y=x(1+x3)2
y=1xx4
y=xx2+2
y=x1x2
f(x)=1x3+1の逆関数f1(x)x=19における微分係数を求めよ。
この動画を見る 

積の微分、合成関数の微分、商の微分の導出

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
積の微分,合成関数の微分,商の微分の導出に関して解説していきます.
この動画を見る 

福田のわかった数学〜高校3年生理系089〜グラフを描こう(11)分数関数、凹凸、漸近線

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学III グラフを描こう(11)

y=x3x21 のグラフを描け。ただし、凹凸、漸近線も調べよ。
この動画を見る 
PAGE TOP preload imagepreload image