整数問題。1,1,2,2,3,3,4,4,を適当に並べてできる数は平方数でないことを証明せよ。 - 質問解決D.B.(データベース)

整数問題。1,1,2,2,3,3,4,4,を適当に並べてできる数は平方数でないことを証明せよ。

問題文全文(内容文):
1,1,2,2,3,3,4,4
この8個の数を並べてできる8桁の数は平方数でないことを証明せよ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1,1,2,2,3,3,4,4
この8個の数を並べてできる8桁の数は平方数でないことを証明せよ。
投稿日:2018.04.04

<関連動画>

【数A】整数の性質:最大公約数と最小公倍数から3つの自然数の組(a,b,c)の決定

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の(A),(B),(C)を満たす3つの自然数の組(a,b,c)をすべて求めよ。ただし、 a<b<cとする。(A)a,b,cの最大公約数は7。(B)bとcの最大公約数は21、最小公倍 数は294。(C)aとbの最小公倍数は84。
この動画を見る 

比例式と整数

アイキャッチ画像
単元: #数学(中学生)#中1数学#数A#比例・反比例#整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z,n$は自然数である.
$2x=3y=5z,x+y+z=n$である.
$\sqrt{xyz}$が整数となる$n$の条件を求めよ.
この動画を見る 

東工大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$a,b,c$が$3a=b^3,5a=c^2$を満たす。
$d^6$が$a$を割り切るような自然数$d$は$d=1$のみ。
(1)
$a$は3と5で割り切れることを示せ

(2)
$a$の素因数は3と5以外にないことを示せ

(3)
$a$を求めよ

出典:2006年東京工業大学 過去問
この動画を見る 

高校入試だけどもガウス記号 大阪星光学院

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
記号[x]はxを超えない最大の整数。
$[(\frac{x-1}{2})^2] = \frac{x}{2} + 3 $のときx=?

大阪星光学院高等学校
この動画を見る 

整数問題 一橋大(類)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべての自然数$n$について$7^n+an+b$が$36$の倍数となる$36$以下の自然数$a,b$を求めよ.

一橋大(類)過去問
この動画を見る 
PAGE TOP