問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (2)\ t \gt 0とし、xy平面上の直線\hspace{190pt}\\
l:y=-x+t\hspace{210pt}\\
と領域\hspace{270pt}\\
B:x^2+(y-2)^2 \leqq \frac{1}{4}t^2\hspace{160pt}\\
を考える。Bとlが2点以上で交わるとき、交わりとして得られる線分の長さは\\
t=\boxed{\ \ ム\ \ }のときに最大値\boxed{\ \ メ\ \ }\sqrt{\boxed{\ \ モ\ \ }}をとる。\hspace{100pt}
\end{eqnarray}
2022上智大学文系過去問
\begin{eqnarray}
{\large\boxed{4}}\ (2)\ t \gt 0とし、xy平面上の直線\hspace{190pt}\\
l:y=-x+t\hspace{210pt}\\
と領域\hspace{270pt}\\
B:x^2+(y-2)^2 \leqq \frac{1}{4}t^2\hspace{160pt}\\
を考える。Bとlが2点以上で交わるとき、交わりとして得られる線分の長さは\\
t=\boxed{\ \ ム\ \ }のときに最大値\boxed{\ \ メ\ \ }\sqrt{\boxed{\ \ モ\ \ }}をとる。\hspace{100pt}
\end{eqnarray}
2022上智大学文系過去問
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (2)\ t \gt 0とし、xy平面上の直線\hspace{190pt}\\
l:y=-x+t\hspace{210pt}\\
と領域\hspace{270pt}\\
B:x^2+(y-2)^2 \leqq \frac{1}{4}t^2\hspace{160pt}\\
を考える。Bとlが2点以上で交わるとき、交わりとして得られる線分の長さは\\
t=\boxed{\ \ ム\ \ }のときに最大値\boxed{\ \ メ\ \ }\sqrt{\boxed{\ \ モ\ \ }}をとる。\hspace{100pt}
\end{eqnarray}
2022上智大学文系過去問
\begin{eqnarray}
{\large\boxed{4}}\ (2)\ t \gt 0とし、xy平面上の直線\hspace{190pt}\\
l:y=-x+t\hspace{210pt}\\
と領域\hspace{270pt}\\
B:x^2+(y-2)^2 \leqq \frac{1}{4}t^2\hspace{160pt}\\
を考える。Bとlが2点以上で交わるとき、交わりとして得られる線分の長さは\\
t=\boxed{\ \ ム\ \ }のときに最大値\boxed{\ \ メ\ \ }\sqrt{\boxed{\ \ モ\ \ }}をとる。\hspace{100pt}
\end{eqnarray}
2022上智大学文系過去問
投稿日:2022.10.07