これは超良問の整数問題! #尾道市立大学2023 #整数問題 - 質問解決D.B.(データベース)

これは超良問の整数問題! #尾道市立大学2023 #整数問題

問題文全文(内容文):
$x,y$を整数とする
$p=x^3+y^3$と表せる素数$p$を
小さいものから順に4つ求めよ.

2023尾道市立大学後期過去問題
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y$を整数とする
$p=x^3+y^3$と表せる素数$p$を
小さいものから順に4つ求めよ.

2023尾道市立大学後期過去問題
投稿日:2024.11.30

<関連動画>

図形×整数問題!差がつく問題です【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
直角三角形の3辺の長さがすべて整数のとき、面積は2の整数倍であることを示せ。

一橋大過去問
この動画を見る 

アジア太平洋数学オリンピックのナイスな整数問題

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは自然数である.
$a^2+b+c,a+b^2+c,a+b+c^2$
この3つのすべてが平方数になることはないことを示せ.

アジア太平洋数学オリンピック過去問
この動画を見る 

灘中 整数問題 大学入試レベル

アイキャッチ画像
単元: #算数(中学受験)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#過去問解説(学校別)#数学(高校生)#灘中学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A=377^6$
①$A$の約数のうち14で割って余りが1
②$A$の約数のうち15で割って余りが1

①②それぞれ個数

出典:2019年灘中学校 過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^a+m^2=n^4$
$a,m,n$は自然数で,$m,n$は奇数であることを示せ.
この動画を見る 

福田のおもしろ数学320〜完全平方数となる条件

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
自然数 $n$ に対して $n \cdot 2^n +1$ が平方数となるような $n$ をすべて求めて下さい。
この動画を見る 
PAGE TOP