【数Ⅲ】【微分】yはxの関数とする。次の微分方程式を解け。kは0でない定数とする。(1) dy/dx=2x+1(2) dy/dx=coskx(3) dy/dx=2/x(4) dy/dx=e^{kx} - 質問解決D.B.(データベース)

【数Ⅲ】【微分】yはxの関数とする。次の微分方程式を解け。kは0でない定数とする。(1) dy/dx=2x+1(2) dy/dx=coskx(3) dy/dx=2/x(4) dy/dx=e^{kx}

問題文全文(内容文):
$y$は$x$の関数とする。次の微分方程式を解け。
ただし$k$は$0$でない定数とする。
(1) $\dfrac{dy}{dx}=2x+1$ (2) $\dfrac{dy}{dx}=\cos kx$

(3) $\dfrac{dy}{dx}=\dfrac2x$ (4) $\dfrac{dy}{dx}=e^{kx}$
チャプター:

0:00 微分方程式について
0:45 (1)
0:56 (2)
1:15 (3)
1:28 (4)

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
$y$は$x$の関数とする。次の微分方程式を解け。
ただし$k$は$0$でない定数とする。
(1) $\dfrac{dy}{dx}=2x+1$ (2) $\dfrac{dy}{dx}=\cos kx$

(3) $\dfrac{dy}{dx}=\dfrac2x$ (4) $\dfrac{dy}{dx}=e^{kx}$
投稿日:2025.12.30

<関連動画>

大学入試問題#909「基本に忠実に」 前橋工科大学(2023)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ 3 }} (x^7-3x^3)e-\displaystyle \frac{x^4}{4}$ $dx$

出典:2023年前橋工科大学
この動画を見る 

【数Ⅲ】【積分とその応用】面積8 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$x=\cos^3\theta,y=\sin^3\theta$で囲まれた部分の面積を求めよ。
この動画を見る 

15東京都教員採用試験(数学:3番 積分)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣$C_1:y=sin2x,C_2:y=k sinx$
$0 \leqq x \leqq \frac{\pi}{2}$ , $0 < k <2$
(1)$C_1$とx軸で囲まれた図形の面積
(2)$C_1$と$C_2$の原点以外の支点のx座標をαとする。cosαを求めよ。
(3)$C_1$とx軸で囲まれた部分の面積を$C_2$が2等分するときkの値を求めよ。
この動画を見る 

大学入試問題#776「シグマの気持ち」 横浜国立大学(1996)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to +\infty } \displaystyle \frac{1}{n}log\{\displaystyle \frac{n}{n}・\displaystyle \frac{n+2}{n}・\displaystyle \frac{n+4}{n}・・・\displaystyle \frac{n+2(n-1)}{n}\}$

出典:1996年横浜国立大学
この動画を見る 

#高専_8#不定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の不定積分を解け。
$\displaystyle \int \displaystyle \frac{x^3}{x-1}$ $dx$
この動画を見る 
PAGE TOP