福田のおもしろ数学560〜三角形の3つの内角を度数法で表したときの論証 - 質問解決D.B.(データベース)

福田のおもしろ数学560〜三角形の3つの内角を度数法で表したときの論証

問題文全文(内容文):

三角形の$3$つの内角を度数法で測ったものを

$x,y,z$とする。次を証明して下さい。

$\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}$がすべて有理数

$\Rightarrow x,y,z$はすべて有理数
    
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

三角形の$3$つの内角を度数法で測ったものを

$x,y,z$とする。次を証明して下さい。

$\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}$がすべて有理数

$\Rightarrow x,y,z$はすべて有理数
    
投稿日:2025.07.15

<関連動画>

ただの整式の割り算

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(3x^3-4x^2+10x+4)^2$を$x^2-2x+4$で割ったあまりを求めよ.$


この動画を見る 

琉球大 剰余 二項定理

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$31^n$を$900$で割った余りが最大になる自然数$n$のうち最小の$n$を求めよ.

1987琉球大過去
この動画を見る 

東大 不等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべての正の実数$x,y$に対し,
$\sqrt{x}+\sqrt{y}\leqq k\sqrt{2x+y}$が成り立つような実数$k$の最小値を求めよ.

1995東大(文理共通)
この動画を見る 

福田のおもしろ数学285〜(1+1/n)^(n+1)が減少数列である証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$
b_{n}=(1 + \frac{1}{n})^{n+1}
\
で定まる数列 \{ b_{n} \}は減少数列であることを示せ。
$
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、$a,b,c,d$は全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、$n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$a_1,a_2,\cdot,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} $$\geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 
PAGE TOP