福田のわかった数学〜高校3年生理系015〜極限(15)級数と区分求積 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系015〜極限(15)級数と区分求積

問題文全文(内容文):
数学$\textrm{III}$ 極限(15)
$\lim_{n \to \infty}\displaystyle \sum_{k=0}^{n-1}\displaystyle \frac{1}{\sqrt{4n^2-k^2}}$ を求めよ。
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(15)
$\lim_{n \to \infty}\displaystyle \sum_{k=0}^{n-1}\displaystyle \frac{1}{\sqrt{4n^2-k^2}}$ を求めよ。
投稿日:2021.05.20

<関連動画>

日本医科大学 バーゼル問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
日本医科大学過去問題
$abc=1$ $a>0,b>0,c>0$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geqq \sqrt{a} + \sqrt{b} +\sqrt{c}$を示せ
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} - \sqrt{a} - \sqrt{b} -\sqrt{c}$
$n \to \infty \frac{3}{2} \leqq 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2} \leqq 2$
この動画を見る 

福田の数学〜慶應義塾大学理工学部2025第1問(3)〜逆関数の微分

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)$f(x)$を微分可能な関数とし、

$g(x)=x^3+x$とする。

関数$g(x)$は微分可能な逆関数$g^{-1}(x)$をもつ。

定数$t$に対して、関数$t^2x^2-f(g^{-1}(x))$は

$x=t^3+t$で極値をとるとする。

このとき、$f'(t)$を$t$の多項式で表すと$f'(t)=\boxed{オ}$となる。

次に、任意の定数$t$に対して、関数$t^2x^2-f(g^{-1}(x))$は

$x=t^3+t$で極値をとるとする。

このとき、$f(0)=-2$ならば$f(1)=\boxed{カ}$である。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 

福田の数学〜立教大学2023年理学部第4問〜数学的帰納法とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 正の数列$x_1$,$x_2$,$x_3$,...,$x_n$,... は以下を満たすとする。
$x_1$=8, $x_{n+1}$=$\sqrt{1+x_n}$ ($n$=1,2,3,...)
このとき、次の問いに答えよ。
(1)$x_2$,$x_3$,$x_4$をそれぞれ求めよ。
(2)すべての$n$≧1について($x_{n+1}$-$\alpha$)($x_{n+1}$+$\alpha$)=$x_n$-$\alpha$ となる定数$\alpha$で、
正であるものを求めよ。
(3)$\alpha$を(2)で求めたものとする。すべての$n$≧1について$x_n$>$\alpha$であることを$n$に関する数学的帰納法で示せ。
(4)極限値$\displaystyle\lim_{n \to \infty}x_n$を求めよ。
この動画を見る 

【高校数学】数Ⅲ-62 合成関数①

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$y$が$u$の関数で$y=g(u)$と表され、$u$が$x$の関数で$u=f(x)$と表されるとき、
$y$は$x$の関数で$y=g(f(x))$と表され、これを$f$と$g$の合成関数という。
また、$y=g(f(x))$を$y=①$と表す。

②$f(x)= 4x ^ 2 、g(x) = -\dfrac{1}{2} (x + 1)$であるとき、
合成関数$(gof)(x)、(fog)(x)$をそれぞれ求めなさい。
この動画を見る 

【数Ⅲ】【関数と極限】次の条件によって定められる数列{an}の極限を求めよ。a₁=0、a₂=1、3an+₂=an+₁+2an他

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列$a_n$の極限を求めよ。
(1) $a₁=0$、$a₂=1$、$3a_{n+2}=a_{n+1}+2a_n$
(2) $a₁=0$、$a₂=1$、$a_{n+2}-7a_{n+1}+10a_n=0$
(3) $a₁=1$、$a₂=2$、$a_{n+2}-6a_{n+1}+9a_n=0$
この動画を見る 
PAGE TOP