【数B】【数列】(x+1)(x+2)(x+3)……(x+n)の展開式において、次の係数を求めよ。(1)xのn-1乗の係数(2)xのn-2乗の係数(n≧2) - 質問解決D.B.(データベース)

【数B】【数列】(x+1)(x+2)(x+3)……(x+n)の展開式において、次の係数を求めよ。(1)xのn-1乗の係数(2)xのn-2乗の係数(n≧2)

問題文全文(内容文):
(x+1)(x+2)(x+3)……(x+n)の展開式において、次の係数を求めよ。
(1)xのn-1乗の係数
(2)xのn-2乗の係数(n≧2)
チャプター:

00:00 スタート(問題確認)
00:10 (1)解説
01:28 (2)解説

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
(x+1)(x+2)(x+3)……(x+n)の展開式において、次の係数を求めよ。
(1)xのn-1乗の係数
(2)xのn-2乗の係数(n≧2)
投稿日:2025.09.24

<関連動画>

高知大(医)3項間漸化式

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=1,a_2=5,a_{n+2}=4a_{n+1}-3a_n-4$
の一般項$a_n$を求めよ.

高知大(医)過去問
この動画を見る 

【数学B/数列】等比数列の一般項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の等比数列の一般項を求めよ。
(1)
$2,6,18,54…$

(2)
$1,-\displaystyle \frac{1}{2},\displaystyle \frac{1}{4}…$

(3)
第$5$項が$48$、第$8$項が$-384$
この動画を見る 

福田の数学〜立教大学2021年経済学部第2問〜2項間の漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$次の条件によって定められる数列$\left\{a_n\right\}$がある。
$a_1=1, a_{n+1}=3a_n+4n (n=1,2,3,\ldots)$
また、$n$に無関係な定数$p,q$に対し、
$b_n=a_n+pn+q (n=1,2,3,\ldots)$
とおく。このとき次の問いに答えよ。
(1)$n,p,q$に無関係な定数$A,B,C,D,E$が
$b_{n+1}=Ab_n+(Bp+C)n+(Dp+Eq) (n=1,2,3,\ldots)$
を満たすとき、A,B,C,D,Eの値をそれぞれ求めよ。
(2)Aを(1)で求めた値とする。数列$\left\{b_n\right\}$が公比$A$の等比数列となるような
$p,q$の値をそれぞれ求めよ。
(3)(2)で求めた$p,q$の値に対して、数列$\left\{b_n\right\}$の一般項を求めよ。

2021立教大学経済学部過去問
この動画を見る 

【高校数学】 数B-99 数学的帰納法⑤

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$a_1=2,a_{n+1}=2-\dfrac{1}{a_n}(n-1,2,3,・・・)$で定義される
数列$\{a_n\}$について,一般項$a_n$を推測し,
それが正しいことを,数学的帰納法を用いて証明しよう.
この動画を見る 

東北大文系 虚数のナイスな問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#数列#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
pは0でない実数である.$x^2-px+5p=0$の解を$\alpha,\beta$とする.
(1)$\alpha^5+\beta^5=p\5$となるpを求めよ.
(2)$\alpha$は虚数で$\alpha^5$が実数となるpを求めよ.

東北大文系過去問
この動画を見る 
PAGE TOP