福田のおもしろ数学562〜連立漸化式で定まる数列に関する証明 - 質問解決D.B.(データベース)

福田のおもしろ数学562〜連立漸化式で定まる数列に関する証明

問題文全文(内容文):

数列$\{a_k\},\{b_k\}$が$a_0=b_0=0$,

$a_{k+1}=b_k,b_{k+1}=\dfrac{a_k b_k+a_k+1}{b_k+1}$

で定義されている。

$a_{2024}+b_{2024}\geqq 88$

であることを証明して下さい。
    
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

数列$\{a_k\},\{b_k\}$が$a_0=b_0=0$,

$a_{k+1}=b_k,b_{k+1}=\dfrac{a_k b_k+a_k+1}{b_k+1}$

で定義されている。

$a_{2024}+b_{2024}\geqq 88$

であることを証明して下さい。
    
投稿日:2025.07.17

<関連動画>

【わかりやすく解説】数学Ⅱ 二項定理で項の係数を求めよう!

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式の展開式における、[ ]内の項の係数を求めよ。
(1)
$(x+3)^5$  $[x^3]$

(2)
$(2x-3y)^6$  $[x^2y^4]$
この動画を見る 

東京理科大 指数方程式 実数解の条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#2次関数#式と証明#2次方程式と2次不等式#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'07東京理科大学過去問題
$9^x+9^{-x}-(a+1)(3^x+3^{-x})-2a^2+8a-4$
$=0$
(1)$a=-5$のとき、解け
(2)実数解をもつaの範囲
この動画を見る 

不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x>yのとき、x^3>y^3を示せ。(x,yは実数)$
この動画を見る 

ε-δ論法 #3 f(x)=e^x が連続

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=e^x $が連続であることを
$ε-δ$論法で示せ.
この動画を見る 

横浜市立(医)2n次方程式の実数解の個数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'82横浜市立大学過去問題
$n \geqq 2$自然数
$\frac{x^{2n}}{2n+1} - \frac{x^{n+1}}{n+2} + \frac{x^{n-1}}{n} -1 = 0$
実数解の個数
この動画を見る 
PAGE TOP