福田の数学〜明治大学2022年理工学部第1問(2)〜2次方程式の解の存在範囲 - 質問解決D.B.(データベース)

福田の数学〜明治大学2022年理工学部第1問(2)〜2次方程式の解の存在範囲

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (2)座標平面上の曲線x^2+2xy+2y^2=5をCとする。\hspace{100pt}\\
(\textrm{a})直線2x+y=t\ が曲線Cと共有点をもつとき、実数tの取り得る値の範囲は\hspace{18pt}\\
-\ \boxed{\ \ コ\ \ }\leqq t \leqq \boxed{\ \ サ\ \ }\ である。\hspace{158pt}\\
(\textrm{b})直線\ 2x+y=t\ が曲線Cとx \geqq 0の範囲で共有点を少なくとも1個もつとき、\hspace{7pt}\\
実数t\ の取り得る値の範囲は-\frac{1}{2}\sqrt{\boxed{\ \ シス\ \ }} \leqq t \leqq \boxed{\ \ セ\ \ }\ である。\hspace{58pt}
\end{eqnarray}

2022明治大学理工学部過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (2)座標平面上の曲線x^2+2xy+2y^2=5をCとする。\hspace{100pt}\\
(\textrm{a})直線2x+y=t\ が曲線Cと共有点をもつとき、実数tの取り得る値の範囲は\hspace{18pt}\\
-\ \boxed{\ \ コ\ \ }\leqq t \leqq \boxed{\ \ サ\ \ }\ である。\hspace{158pt}\\
(\textrm{b})直線\ 2x+y=t\ が曲線Cとx \geqq 0の範囲で共有点を少なくとも1個もつとき、\hspace{7pt}\\
実数t\ の取り得る値の範囲は-\frac{1}{2}\sqrt{\boxed{\ \ シス\ \ }} \leqq t \leqq \boxed{\ \ セ\ \ }\ である。\hspace{58pt}
\end{eqnarray}

2022明治大学理工学部過去問
投稿日:2022.09.06

<関連動画>

一文字削除からの判別式【2014年早稲田大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$a,b,c$が
$a+b+c=8,a^2+b^2+c^2=32$
を満たす時、実数$c$の最大値を求めよ。

2014早稲田大過去問
この動画を見る 

福田の数学〜立教大学2022年経済学部第1問(6)〜平均と分散

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$(6)$n$個の値からなるデータがあり,データの値の総和が4,データの値の2乗の総和が26,データの分散が3であるとする.このとき,データの個数$n$は$\boxed{キ}$である.

2022立教大学経済学部過去問
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(1+x)(1+y)(x+y)=2023 \\
x^3+y^3=1930
\end{array}
\right.
\end{eqnarray}$

$x+y=?$
この動画を見る 

図形と計量 三角比の変換応用【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の値を簡単にせよ。
(1) $\sin 10°\cos 80°-\sin 100°\cos 170°$
(2) $\dfrac{1}{1+\sin^220°}-\tan^2110°$
(3) $\sin^2(180°-\theta)+\sin^2(90°-\theta)+\sin^2(90°+\theta)+cos^2(90°-\theta)$
この動画を見る 

式の値 広島大附属

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2 - b^2 + (a - b) = 0$
$a+b =?$
ただし$a \neq b$

広島大学附属高等学校
この動画を見る 
PAGE TOP