福田の1.5倍速演習〜合格する重要問題002〜京都大学2015年理系数学第1問〜回転体の体積 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題002〜京都大学2015年理系数学第1問〜回転体の体積

問題文全文(内容文):
2つの関数$y = \sin(x+\frac{\pi}{8})$と$y=\sin2x$のグラフの$0\leqq x\leqq \frac{\pi}{2}$の部分で囲まれ
る領域を、x軸のまわりに1回転させてできる立体の体積を求めよ。
ただし、$x=0$と$x=\frac{\pi}{2}$は領域を囲む線とは考えない。

2015京都大学理系過去問
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
2つの関数$y = \sin(x+\frac{\pi}{8})$と$y=\sin2x$のグラフの$0\leqq x\leqq \frac{\pi}{2}$の部分で囲まれ
る領域を、x軸のまわりに1回転させてできる立体の体積を求めよ。
ただし、$x=0$と$x=\frac{\pi}{2}$は領域を囲む線とは考えない。

2015京都大学理系過去問
投稿日:2022.11.17

<関連動画>

【高校数学】毎日積分37日目【難易度:★★★☆☆】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^2\frac{2x+1}{\sqrt{x^2+4}}dx$
この動画を見る 

大学入試問題#628「3分クッキング!」 東邦大学医学部(2015) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{2} \displaystyle \frac{x^2・2^{-x}}{2^x+2^{-x}} dx$

出典:2015年東邦大学医学部 入試問題
この動画を見る 

#数検準1級1次-1 #定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{1} \displaystyle \frac{x}{x^4+2x^2+1} dx$

出典:数検準1級1次
この動画を見る 

大学入試問題#148 京都大学(1972) 積分と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$F(x)=\displaystyle \int_{0}^{x}\displaystyle \frac{t}{(t+1)(t+3)}dt$のとき
$\displaystyle \lim_{ x \to \infty }(F(x)-log\ x)$を求めよ。

出典:1972年京都大学 入試問題
この動画を見る 

【高校数学】毎日積分39日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_1^2\frac{logx}{1+x^2}dx $
これを解け.
この動画を見る 
PAGE TOP