熊本大2020整数問題 - 質問解決D.B.(データベース)

熊本大2020整数問題

問題文全文(内容文):
$x^2+5y^2=2z^2$を満たす自然数$(x,y,z)$は存在しないことを示せ.

2020熊本大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+5y^2=2z^2$を満たす自然数$(x,y,z)$は存在しないことを示せ.

2020熊本大過去問
投稿日:2020.07.31

<関連動画>

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+2n-1$と$n^5-5$がともに7の倍数となる$n$のうち3桁で最小のものを求めよ.
この動画を見る 

【高校数学】割り算の商や余りの性質の例題演習 5-5.5【数学A】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 144以下の自然数で、144と互いに素である自然数の個数を求めよ。

(2) 49¹⁰⁰を6で割った余りを求めよ。

(3) 20!が$3^k$で割り切れるとき、kの最大値を求めよ。ただし、kは自然数
この動画を見る 

大学入試問題#106 明治薬科大学(2004) 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$l,m,n$:自然数
$l \leqq m \leqq n$
$\displaystyle \frac{1}{l}+\displaystyle \frac{1}{m}+\displaystyle \frac{1}{n}=\displaystyle \frac{3}{2}$をみたす組$(l,m,n)$をすべて求めよ。

出典:2004年明治薬科大学 入試問題
この動画を見る 

開成高校 整数問題 最大公約数・最小公倍数

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#開成高等学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数$(a \lt b)$
最大公約数を$g(\neq 1)$
最小公倍数を$l$
$a^2+b^2+g^2+l^2=1300$
$a,b$を求めよ

出典:開成高等学校 過去問
この動画を見る 

【合同式】整数問題がみるみる解けるようになる最強の武器を授けましょう。【数学】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$17^{100}$を$6$で割ったあまりを求めよ
この動画を見る 
PAGE TOP