【高校数学】【図形と方程式】領域の超時短裏ワザ!後編 - 質問解決D.B.(データベース)

【高校数学】【図形と方程式】領域の超時短裏ワザ!後編

問題文全文(内容文):
定期考査直前、「この問題だけはできるようにしよう!」ってことで領域の問題を裏ワザで解説してみました。(割と有名なので知ってる人はゴメンナサイ)この動画は前編( • 【高校数学】【図形と方程式】領域の超時短裏ワザ!前編【後編は明日18時公開!】 )を見てからご覧ください!
単元: #数Ⅱ#図形と方程式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
定期考査直前、「この問題だけはできるようにしよう!」ってことで領域の問題を裏ワザで解説してみました。(割と有名なので知ってる人はゴメンナサイ)この動画は前編( • 【高校数学】【図形と方程式】領域の超時短裏ワザ!前編【後編は明日18時公開!】 )を見てからご覧ください!
投稿日:2024.05.11

<関連動画>

#上智大学(2016) #ウォリス積分 #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#上智大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} (\sin^3x+\cos^3x) dx$

出典:2016年上智大学
この動画を見る 

福田の数学〜慶應義塾大学2024環境情報学部第1問(2)〜対数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$
\begin{eqnarray}
実数x, y, zが \\
\left\{
\begin{array}{1}
x > 1, \ y > 1 , \ z > 1\\
log_{x}y + log_{y}x + log_{y}z \leqq 6\\
4xz + 3x - 7y - 5z = -5
\end{array}
\right.
\\を満たしているとき \
x = \frac{\fbox{アイ}}{\fbox{ウエ}}, \
y = \frac{\fbox{オカ}}{\fbox{キク}}, \
z = \frac{\fbox{ケコ}}{\fbox{サシ}},
\end{eqnarray}
$
この動画を見る 

【数Ⅱ】【微分法と積分法】条件からの関数決定2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす2次関数 $f(x)$ を求めよ。

(1)$\int_{-1}^{1} f(x) \,dx = 0$,
$\int_{0}^{2} f(x) \,dx = 10$
, $\int_{-1}^{1} x f(x) \,dx = \frac{4}{3}$

(2)
$\int_{0}^{2} f(x) \,dx = 1$,
$\int_{0}^{2} x f(x) \,dx = 1$,
$\int_{0}^{2} x^2 f(x) \,dx = 2$
この動画を見る 

【数Ⅱ】微分法と積分法:2021年高3第1回数台全国模試 (文理共通)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数とし、xの4次関数f(x)を$f(x)=3x^4-4(a+2)x^3+12ax^2+1$とする。次の問に答 えよ。
(1)f(x)が極大値をもつようなaの値の範囲を求めよ。
(2)(1)で求めた範囲 をaが動くとき、曲線y=f(x)において、f(x)が極大となる点の軌跡を求めよ。
この動画を見る 

福田の数学〜立教大学2021年理学部第1問(2)〜3直線が1点で交わる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0     
\end{array}
\right.
 (-2 \leqq t \leqq 1)
\end{eqnarray}$ 
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。

2021立教大学理学部過去問
この動画を見る 
PAGE TOP