不等式の証明の難問!記号が多すぎる。。。 #Shorts #ずんだもん #勉強 #数学 - 質問解決D.B.(データベース)

不等式の証明の難問!記号が多すぎる。。。 #Shorts #ずんだもん #勉強 #数学

問題文全文(内容文):
mを2以上の自然数、nを自然数とするとき、次の不等式 nmCn≧m^n≧Σ[i=0,n-1]m^i が成り立つことを示せ。
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#お茶の水女子大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
mを2以上の自然数、nを自然数とするとき、次の不等式 nmCn≧m^n≧Σ[i=0,n-1]m^i が成り立つことを示せ。
投稿日:2024.12.19

<関連動画>

滋賀県立大 不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
不等式
$ax^2+y^2+az^2-xy-yz-xz \geqq 0$が任意の実数$x,y,z$でつねに成り立つ$a$の範囲を求めよ

出典:2007年滋賀県立大学 過去問
この動画を見る 

ナイスな指数方程式

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を(x,y)としたとき、
$16^{x^2+y}+16^{x+y^2}=1$を求めよ.
この動画を見る 

ε-δ論法 #2 f(x)=log x が連続

アイキャッチ画像
単元: #数Ⅱ#式と証明#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\log x\ (x\gt 0)$が連続であることを
$ε-δ$論法で示せ.
この動画を見る 

【数Ⅱ】式と証明:対称式の性質をうまく使おう

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^4+2x^3+ax^2+2x+1=0$で$\dfrac{x+1}{x=t}$と置くとき与式をtの式で表せ
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第3問〜約数と倍数の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
mは3以上の奇数とし、mの全ての正の約数を$a_1,a_2,\ldots,a_k$と並べる。
ただし、$a_1 \lt a_2 \lt \ldots \lt a_k$とする。
以下の2つの条件$(\textrm{i}),(\textrm{ii})$を満たすmについて考える。
$(\textrm{i})m$は素数ではない。
$(\textrm{ii})i \leqq j,1 \lt i \lt k ,1 \lt j \lt k$を満たす全ての整数i,jについて$a_j-a_i \leqq 3$が
成り立つ。
このとき、次の問いに答えよ。
(1)kは3または4であることを示し、mを$a_2$を用いて表せ。
(2)$k=3$となるとき、全ての正の整数nについて$(a_2n+1)^{a_2}-1$は
mの倍数であることを示せ。

2022東京慈恵会医科大学医学部過去問
この動画を見る 
PAGE TOP