福田の数学〜立教大学2023年理学部第3問〜双曲線と直線の囲む面積 - 質問解決D.B.(データベース)

福田の数学〜立教大学2023年理学部第3問〜双曲線と直線の囲む面積

問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上の曲線Cを
C:$y$=$\frac{3}{x}$-8 ($x$>0)
で定める。また$p$を正の定数とし、点$\left(p, \displaystyle\frac{3}{p}-8\right)$におけるCの接線を$l$とする。
さらに、$a$を実数とし、直線$y$=$ax$を$m$とする。このとき、次の問いに答えよ。
(1)$l$の方程式を求めよ。
(2)$l$が原点を通るとき、$p$の値を求めよ。
(3)Cと$m$が異なる2点P,Qを共有するとき、$a$の値の範囲を求めよ。
(4)(3)のとき、Qの$x$座標$x_0$はPの$x$座標$x_1$よりも大きいとする。$x_0$-$x_1$=1であるときの$a$の値を求めよ。
(5)(4)のとき、Cと直線$m$で囲まれる図形の面積を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上の曲線Cを
C:$y$=$\frac{3}{x}$-8 ($x$>0)
で定める。また$p$を正の定数とし、点$\left(p, \displaystyle\frac{3}{p}-8\right)$におけるCの接線を$l$とする。
さらに、$a$を実数とし、直線$y$=$ax$を$m$とする。このとき、次の問いに答えよ。
(1)$l$の方程式を求めよ。
(2)$l$が原点を通るとき、$p$の値を求めよ。
(3)Cと$m$が異なる2点P,Qを共有するとき、$a$の値の範囲を求めよ。
(4)(3)のとき、Qの$x$座標$x_0$はPの$x$座標$x_1$よりも大きいとする。$x_0$-$x_1$=1であるときの$a$の値を求めよ。
(5)(4)のとき、Cと直線$m$で囲まれる図形の面積を求めよ。
投稿日:2023.07.10

<関連動画>

大学入試問題#71 横浜国立大学(2005) 置換積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{log\ 3}{2}}\ \displaystyle \frac{e^x+1}{e^{2x}+1}\ dx$

出典:2005年横浜国立大学 入試問題
この動画を見る 

大学入試問題#388「大学名に再生回数を託してみた」 #福島県立医科大学2009 #部分積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\tan^2x}{\cos^2x} dx$

出典:2009年福島県立医科大学 入試問題
この動画を見る 

大学入試問題#137 京都大学(2021) 曲線の長さ

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \leqq \displaystyle \frac{\pi}{2}$
曲線$y=log(1+\cos\ x)$の長さ$l$を求めよ。

出典:2021年京都大学 入試問題
この動画を見る 

大学入試問題#553「誘導なかったら、萎える」 東邦大学医学部(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
(1)
$\alpha=\displaystyle \frac{\pi}{4},\beta=\displaystyle \frac{3\pi}{4}$のとき
$\tan\displaystyle \frac{\alpha}{2}+\tan\displaystyle \frac{\beta}{2}$の値を求めよ

(2)
$\displaystyle \int_{0}^{1} \displaystyle \frac{dx}{x^2-\sqrt{ 2 }x+1}$

出典:2013年東邦大学医学部 入試問題
この動画を見る 

大学入試問題#350「見た目とのギャップ」 岩手医科大学2019 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\sqrt{ 3 }}{2}} \displaystyle \frac{dx}{(1-x^2)^2}$

出典:2019年岩手医科大学 入試問題
この動画を見る 
PAGE TOP