福田の数学〜立教大学2023年理学部第3問〜双曲線と直線の囲む面積 - 質問解決D.B.(データベース)

福田の数学〜立教大学2023年理学部第3問〜双曲線と直線の囲む面積

問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上の曲線Cを
C:$y$=$\frac{3}{x}$-8 ($x$>0)
で定める。また$p$を正の定数とし、点$\left(p, \displaystyle\frac{3}{p}-8\right)$におけるCの接線を$l$とする。
さらに、$a$を実数とし、直線$y$=$ax$を$m$とする。このとき、次の問いに答えよ。
(1)$l$の方程式を求めよ。
(2)$l$が原点を通るとき、$p$の値を求めよ。
(3)Cと$m$が異なる2点P,Qを共有するとき、$a$の値の範囲を求めよ。
(4)(3)のとき、Qの$x$座標$x_0$はPの$x$座標$x_1$よりも大きいとする。$x_0$-$x_1$=1であるときの$a$の値を求めよ。
(5)(4)のとき、Cと直線$m$で囲まれる図形の面積を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上の曲線Cを
C:$y$=$\frac{3}{x}$-8 ($x$>0)
で定める。また$p$を正の定数とし、点$\left(p, \displaystyle\frac{3}{p}-8\right)$におけるCの接線を$l$とする。
さらに、$a$を実数とし、直線$y$=$ax$を$m$とする。このとき、次の問いに答えよ。
(1)$l$の方程式を求めよ。
(2)$l$が原点を通るとき、$p$の値を求めよ。
(3)Cと$m$が異なる2点P,Qを共有するとき、$a$の値の範囲を求めよ。
(4)(3)のとき、Qの$x$座標$x_0$はPの$x$座標$x_1$よりも大きいとする。$x_0$-$x_1$=1であるときの$a$の値を求めよ。
(5)(4)のとき、Cと直線$m$で囲まれる図形の面積を求めよ。
投稿日:2023.07.10

<関連動画>

【高校数学】弘前大学の積分の問題をその場で解説しながら解いてみた!毎日積分103日目~47都道府県制覇への道~【㊻青森】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【弘前大学 2023】
$\displaystyle \int_\frac{-π}{4}^\frac{π}{3}\frac{x}{cos^2x}dx$
この動画を見る 

【数Ⅲ】置換積分【理屈と手順を分けて考える。】

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)\displaystyle \int 2x(x^2+1)^3 dxを求めよ.$
$ (2)\displaystyle \int \dfrac{x}{x^2+1}dxを求めよ.$
$ (3)\displaystyle \int_{1}^{2}\dfrac{x}{x^2+1}dxを求めよ.$
$ (4)\displaystyle \int_{0}^{1} x\sqrt{2x+1}dxを求めよ.$
この動画を見る 

このパスワード難しすぎる...

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle \int_{-2}^{ 2 } (x^3 \cos \frac{x}{2}+\frac{1}{2}) \sqrt{ 4-x^2dx }$
この動画を見る 

【数Ⅲ-173】積分と体積④(媒介変数表示編)

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と体積④・媒介変数表示編)

①$0 \leqq θ \leqq \frac{\pi}{2}$の区間において、
曲線$x=\sinθ,y=\sin2θ$と$x$軸で囲まれた図形を、$x$軸のまわりに1回転させてできる回転体の体積を求めよ。

この動画を見る 

【数Ⅲ】積分法の応用:~授業風景シリーズ~ 回転体の体積 後編

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材: #チャート式#青チャートⅢ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅲ 積分法の応用】
$y=\sin2x, y=\cos2x\left(\dfrac{\pi}{8}\leqq x\leqq\dfrac{5\pi}{8}\right)$で囲まれた部分をx軸の周りに回転して出来る立体の体積を求めよ。
この動画を見る 
PAGE TOP