琉球大 整数問題 - 質問解決D.B.(データベース)

琉球大 整数問題

問題文全文(内容文):
pは素数であり,nを自然数とする.
$f(n)=n^p-n,f(n+1)-f(n)$はpの倍数であることを示せ.

琉球大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#琉球大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
pは素数であり,nを自然数とする.
$f(n)=n^p-n,f(n+1)-f(n)$はpの倍数であることを示せ.

琉球大過去問
投稿日:2022.05.11

<関連動画>

【高校数学】最大公約数と最小公倍数の例題演習 5-4.5【数学A】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 和が648で最大公約数が72であるような、ともに3桁の2つの自然数を求めよ。

(2) 最大公約数が28で最小公倍数1260であるような自然数a,bの組をすべて求めよ。
  ただし、a$\lt$bとする。
この動画を見る 

中学レベル 倍数の見分け方の証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は1~9の整数である.
$XX+YY+ZZ=XYZ$
これを解け.
この動画を見る 

息抜き整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n!+8=2^k$
自然数$(n,k)$をすべて求めよ.
この動画を見る 

等間隔で素数が出現!?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
5、11、17、23、29は、等間隔で並ぶ5つの整数がすべて素数。
では、等間隔で並ぶ 6つの整数すべてが素数となる組を1つ例示せよ。
この動画を見る 

【整数問題】超典型的な問題!解けますか?【数学 入試問題】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{1}{6}$かつ$m<n$を満たす正の整数$m,n$の組($m,n$)をすべて求めよ。
この動画を見る 
PAGE TOP