福田の数学〜慶應義塾大学2022年環境情報学部第5問〜ジャンケンで勝者1人を決める確率 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年環境情報学部第5問〜ジャンケンで勝者1人を決める確率

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ 複数人でじゃんけんを何回か行い勝ち残った1人を決めることを考える。\hspace{70pt}\\
最初は全員がじゃんけんに参加して始める。それぞれのじゃんけんでは、\\
そのじゃんけんの参加者がそれぞれグー、チョキ、パーのどれかを出し、\\
もし誰か1人が他の全員に買った場合にはその1人が商社となりじゃんけん\\
はそこで終了する。そうでない場合、全員が同じ手を出したか、グー、チョキ、\\
パーのそれぞれを誰かが出した場合には'あいこ'となり、そのじゃんけんの参加者全員が\\
次のじゃんけんに進む。上記以外で、2つの手に分かれた場合には、\\
負けた手を出した人を除いて勝った手を出した人だけが次のじゃんけんに進む。\\
このように、じゃんけんを繰り返し行い、1人の勝者が決まるまで続けるものとする。\\
ただし、じゃんけんの参加者全員、グー、チョキ、パーのどれかを等しい確率\\
で毎回ランダムに出すものとする。また通常のじゃんけんのように\\
グーはチョキに勝ち、チョキはパーに勝ち、パーはグーに勝つものとする。\\
\\
(1)3人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで\\
勝者が決まる確率は\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}\ であり、\\
ちょうど2回目のじゃんけんで勝者が決まる確率は\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}\ であり、\\
ちょうど3回目のじゃんけんで勝者が決まる確率は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}\ である。\\
\\
(2)4人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで\\
勝者が決まる確率は\frac{\boxed{\ \ スセソ\ \ }}{\boxed{\ \ タチツ\ \ }}\ であり、\\
ちょうど2回目のじゃんけんで勝者が決まる確率は\frac{\boxed{\ \ テトナ\ \ }}{\boxed{\ \ ニヌネ\ \ }}\ である。
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ 複数人でじゃんけんを何回か行い勝ち残った1人を決めることを考える。\hspace{70pt}\\
最初は全員がじゃんけんに参加して始める。それぞれのじゃんけんでは、\\
そのじゃんけんの参加者がそれぞれグー、チョキ、パーのどれかを出し、\\
もし誰か1人が他の全員に買った場合にはその1人が商社となりじゃんけん\\
はそこで終了する。そうでない場合、全員が同じ手を出したか、グー、チョキ、\\
パーのそれぞれを誰かが出した場合には'あいこ'となり、そのじゃんけんの参加者全員が\\
次のじゃんけんに進む。上記以外で、2つの手に分かれた場合には、\\
負けた手を出した人を除いて勝った手を出した人だけが次のじゃんけんに進む。\\
このように、じゃんけんを繰り返し行い、1人の勝者が決まるまで続けるものとする。\\
ただし、じゃんけんの参加者全員、グー、チョキ、パーのどれかを等しい確率\\
で毎回ランダムに出すものとする。また通常のじゃんけんのように\\
グーはチョキに勝ち、チョキはパーに勝ち、パーはグーに勝つものとする。\\
\\
(1)3人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで\\
勝者が決まる確率は\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}\ であり、\\
ちょうど2回目のじゃんけんで勝者が決まる確率は\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}\ であり、\\
ちょうど3回目のじゃんけんで勝者が決まる確率は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}\ である。\\
\\
(2)4人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで\\
勝者が決まる確率は\frac{\boxed{\ \ スセソ\ \ }}{\boxed{\ \ タチツ\ \ }}\ であり、\\
ちょうど2回目のじゃんけんで勝者が決まる確率は\frac{\boxed{\ \ テトナ\ \ }}{\boxed{\ \ ニヌネ\ \ }}\ である。
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
投稿日:2022.07.12

<関連動画>

山梨大 順列の証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2019年 山梨大学 過去問

赤玉$p$個,青玉$q$個,白玉$r$個
合計$n$個を1列に並べてできる順列の総数が
$\frac{n!}{p!f!r!}$であることを証明せよ。
この動画を見る 

福田の数学〜千葉大学2022年理系第1問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 円周を12等分するように点A_1,A_2,A_3,\ldots,A_{12}が時計回りに並んでいる。\\
また、白球2個と黒球4個が入った袋がある。点Pを、次の操作によって\\
12個の点上を移動させる。\\
操作:袋から球を一つ取り出した後にサイコロを投げる。白球ならば時計回りに、\\
黒球ならば反時計回りに、サイコロの目の数だけPを移動させる。\\
取り出した球は袋に戻さないこととする。\\
Pを最初に点 A_1に置く。操作を1回行い、PがA_1から移動した点をQとおく。\\
続けて操作を1回行い、PがQから移動した点をRとおく。\\
もう一度操作を行い、 PがRから移動した点をSとおく。\\
(1) R=A_1となる確率を求めよ。\\
(2)3点Q, R, Sを結んでできる図形が正三角形となる確率を求めよ。\\
\end{eqnarray}

2022千葉大学理系過去問
この動画を見る 

確率の基本問題

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022福岡教育大学過去問題
n=1,2,3,4,5,6
サイコロを3回振って出た目の最大値がnとなる確率を$P_n$
出た目の最小値がnとなる確率を$Q_n$
$P_n$,$Q_n$をnを用いて表せ
この動画を見る 

サイコロとルートと確率 履正社(大阪)

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
さいころを2回続けて投げ、1回目に出た目をa、2回目に出た目をbとする。
$\sqrt{a×2^b}$が整数となる確率を求めよ。

履正社高等学校
この動画を見る 

福田の数学〜90%の人が間違う平均の計算〜慶應義塾大学2023年総合政策学部第3問〜確率漸化式と平均の計算

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
あるすごろくのゲ ー ムでは、 1 枚のコインを投げてその表裏でコマを前に進め、10 マス目のゴ ー ルを目指すものとする。
コマは、最初、 1 マス目のスタ ー トの位置にあり、コインを投げて表であれば 2マスだけコマを前に進め、裏であれば 1 マスだけコマを前に進める。ただし、 9マス目で表が出たために 10 マス目を超えて前に進めなくてはならなくなった場合には、ゴ ー ルできずにそこでゲ ー ムは終了するものとする。また、コインの表と裏は等しい確率で出るものとする。このとき、ある 1 回のゲ ー ムの中でnマス目(n= 1 , 2 ,・・・,10)にコマが止まる確率を$p_n$とすると,
$p_1=1,p_2=\frac{1}{2},p_3=\dfrac{\fbox{ア}}{\fbox{イ}},p_4=\dfrac{\fbox{ウ}}{\fbox{エ}}$
である。
$p_n=\dfrac{\fbox{オ}}{\fbox{カ}}\dfrac{\fbox{キ}}{\fbox{ク}}(\dfrac{\fbox{ケ}}{\fbox{コ}})^n$
である。またコマがコールしたとき、スタートからゴールするまでにコインを投げた回数は平均$\dfrac{\fbox{サ}}{\fbox{シ}}$回である

2023慶應義塾大学総合政策学部過去問
この動画を見る 
PAGE TOP