福田の数学〜慶應義塾大学2022年環境情報学部第5問〜ジャンケンで勝者1人を決める確率 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年環境情報学部第5問〜ジャンケンで勝者1人を決める確率

問題文全文(内容文):
${\large\boxed{5}}$複数人でじゃんけんを何回か行い勝ち残った1人を決めることを考える。
最初は全員がじゃんけんに参加して始める。それぞれのじゃんけんでは、
そのじゃんけんの参加者がそれぞれグー、チョキ、パーのどれかを出し、
もし誰か1人が他の全員に買った場合にはその1人が商社となりじゃんけん
はそこで終了する。そうでない場合、全員が同じ手を出したか、グー、チョキ、
パーのそれぞれを誰かが出した場合には'あいこ'となり、そのじゃんけんの参加者全員が
次のじゃんけんに進む。上記以外で、2つの手に分かれた場合には、
負けた手を出した人を除いて勝った手を出した人だけが次のじゃんけんに進む。
このように、じゃんけんを繰り返し行い、1人の勝者が決まるまで続けるものとする。
ただし、じゃんけんの参加者全員、グー、チョキ、パーのどれかを等しい確率
で毎回ランダムに出すものとする。また通常のじゃんけんのように
グーはチョキに勝ち、チョキはパーに勝ち、パーはグーに勝つものとする。
(1)3人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで
勝者が決まる確率は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$であり、
ちょうど2回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$であり、
ちょうど3回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。

(2)4人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで
勝者が決まる確率は$\frac{\boxed{\ \ スセソ\ \ }}{\boxed{\ \ タチツ\ \ }}$であり、
ちょうど2回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ テトナ\ \ }}{\boxed{\ \ ニヌネ\ \ }}$である。

2022慶應義塾大学環境情報学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$複数人でじゃんけんを何回か行い勝ち残った1人を決めることを考える。
最初は全員がじゃんけんに参加して始める。それぞれのじゃんけんでは、
そのじゃんけんの参加者がそれぞれグー、チョキ、パーのどれかを出し、
もし誰か1人が他の全員に買った場合にはその1人が商社となりじゃんけん
はそこで終了する。そうでない場合、全員が同じ手を出したか、グー、チョキ、
パーのそれぞれを誰かが出した場合には'あいこ'となり、そのじゃんけんの参加者全員が
次のじゃんけんに進む。上記以外で、2つの手に分かれた場合には、
負けた手を出した人を除いて勝った手を出した人だけが次のじゃんけんに進む。
このように、じゃんけんを繰り返し行い、1人の勝者が決まるまで続けるものとする。
ただし、じゃんけんの参加者全員、グー、チョキ、パーのどれかを等しい確率
で毎回ランダムに出すものとする。また通常のじゃんけんのように
グーはチョキに勝ち、チョキはパーに勝ち、パーはグーに勝つものとする。
(1)3人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで
勝者が決まる確率は$\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$であり、
ちょうど2回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$であり、
ちょうど3回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}$である。

(2)4人でじゃんけんを複数回行い1人の勝者を決める場合、1回目のじゃんけんで
勝者が決まる確率は$\frac{\boxed{\ \ スセソ\ \ }}{\boxed{\ \ タチツ\ \ }}$であり、
ちょうど2回目のじゃんけんで勝者が決まる確率は$\frac{\boxed{\ \ テトナ\ \ }}{\boxed{\ \ ニヌネ\ \ }}$である。

2022慶應義塾大学環境情報学部過去問
投稿日:2022.07.12

<関連動画>

福田の数学〜早稲田大学2023年商学部第1問(4)〜空間内の格子点から正三角形ができる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$
(4)次の操作(*)を考える。
(*)1個のさいころを3回続けて投げ、出た目を順に$a_1$, $a_2$, $a_3$とする。
$a_1$, $a_2$, $a_3$を3で割った余りをそれぞれ$r_1$, $r_2$, $r_3$とするとき、座標空間の点($r_1$, $r_2$, $r_3$)を定める。
この操作(*)を3回続けて行い、定まる点を順に$A_1$, $A_2$, $A_3$とする。このとき、$A_1$, $A_2$, $A_3$が正三角形の異なる3頂点となる確率は$\boxed{\ \ エ\ \ }$である。
この動画を見る 

福田の数学〜青山学院大学2025理工学部第1問〜さいころの目によって平面上を動く点に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$1$個のさいころを$4$回続けて投げる

反復試行において、

さいころの出る目を順に$X_1,X_2,X_3,X_4$として、

$xy$平面上の$4$点$P_1,P_2,P_3,P_4$を

以下のように定める。

$1$.原点$O$から$x$軸の正の向きに$X_1$だけ進んだ位置に

ある点を$P_1$とする。

$2$.$P_1$から$y$軸の正の向きに$X_2$だけ進んだ位置に

ある点を$P_2$とする。

$3$.$P_2$から$x$軸の負の向きに$X_3$だけ進んだ位置に

ある点を$P_3$とする。

$4$.$P_3$から$y$軸の負の向きに$X_4$だけ進んだ位置に

ある点を$P_4$とする。

例えば、さいころの出た目が順に$3,2,5,5$ならば

$P_1,P_2,P_3,P_4$の座標はそれぞれ

$(3,0),(3,2),(-2,2),(-2,-3)$となる。

(1)$P_4$が$O$と一致する確率は$\dfrac{\boxed{ア}}{\boxed{イウ}}$である。

(2)線分$OP_1$と線分$P_3P_4$が共有点をもつ確率は

$\dfrac{\boxed{エオ}}{\boxed{カキク}}$である。

ただし、線分は両方の端点を含むものとする。

(3)$P_4$の座標が$(3,3)$である確率は

$\dfrac{\boxed{ケ}}{\boxed{コサシ}}$である。
    
この動画を見る 

数学「大学入試良問集」【4−4 組分け問題②】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の各問いに答えよ。
(1)
白色、赤色、橙色、黄色、緑色、青色、藍色、紫色の同じ大きさの球が1個ずつ全部で8個ある。
これらの8個の球を2個1組として4つに分ける。
このような分け方は全部で何通りあるか。

(2)
(1)の8個の球にさらに同じ大きさの白色の球2個を付けくわえる。
これらの10個の球を2個1組として5つに分ける。
このような分け方は全部で何通りあるか。
この動画を見る 

みんなが間違う?コイントスの確率

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
コイントスの確率
コインを10回投げて表がぴったり5回出る確率を求めよ
この動画を見る 

場合の数 並び替え基本【セトリの算数がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・6個の数字1,2,3,4,5,6から異なる4種の数字を使って4桁の整数を作るとき、次のような整数は何個あるか。
(1)4300より大きい整数
(2)5000より大きい整数

・女子5人、男子3人が1列に並ぶとき、次の並び方は何通りあるか。
(1)女子5人が続いて並ぶ。
(2)女子5人、男子3人がそれぞれ続いて並ぶ。
(3)両端が男子である。
(4)どの男子も隣合わない。

・男子4人、女子4人が男女交互に1列に並ぶ方法は何通りあるか。
この動画を見る 
PAGE TOP