福井大 漸化式 - 質問解決D.B.(データベース)

福井大 漸化式

問題文全文(内容文):
$k,n$は自然数 $a_{1}=k$
$a_{n+1}=2a_{n}+1$

(1)
$a_{n+4}-a_{n}$は15の倍数であることを示せ

(2)
$a_{2010}$が15の倍数となる最小の$k$の値は?

出典:福井大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k,n$は自然数 $a_{1}=k$
$a_{n+1}=2a_{n}+1$

(1)
$a_{n+4}-a_{n}$は15の倍数であることを示せ

(2)
$a_{2010}$が15の倍数となる最小の$k$の値は?

出典:福井大学 過去問
投稿日:2019.06.10

<関連動画>

漸化式 初級から中級への橋渡し 1問を3通りの解法で Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の漸化式、3通りの解法を考えて下さい。
$a_1=1 \quad$ $a_{n+1}=\frac{1}{2}a_n+\frac{1}{3^n}$
特性方程式
$a_{n+1}=α a_n+β \quad$ $x=αx+β$
$a_{n+2}=αa_{n+1}+β a_n=0 \quad$ $x^2+αx+β=0$
この動画を見る 

三重大 逆 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{1}{\sqrt{ 5 }}${$(\displaystyle \frac{5+\sqrt{ 5 }}{2})^n-(\displaystyle \frac{5-\sqrt{ 5 }}{2})^n$}

(1)
$a_{n+2}$を$a_{n+1},a_{n}$を用いて表せ

(2)
$S_{n+1}$を$a_{n}$の1次式で表せ

出典:1996年三重大学 過去問
この動画を見る 

ざ・見掛け倒し

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^{2022}n^{2022}=$
$1^{2022}+2^{2022}+3^{2022}+$
$・・・・・・+2021^{2022}+2022^{2022}$を13で割った余りを求めよ.
この動画を見る 

福田のわかった数学〜高校1年生063〜場合の数(2)完全順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(2) 完全順列\hspace{140pt}\\
1,2,3,4を1列に並べたものをa_1a_2a_3a_4とする。\\
a_1≠1,a_2≠2,a_3≠3,a_4≠4を満たす並べ方は何通りあるか。
\end{eqnarray}
この動画を見る 

【数B】数列:部分分数分解の基本! 次の和S[n]を求めよ。S[n]=1/(1×5)+1/(5×9)+1/(9×13)+...+1/(4n-3)(4n+1)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の和$S_n$を求めよ。
$S_n=\dfrac{1}{1・5}+\dfrac{1}{5・9}+\dfrac{1}{9・13}+...+\dfrac{1}{(4n-3)(4n-1)}$
この動画を見る 
PAGE TOP