整数問題 ピタゴラス数 - 質問解決D.B.(データベース)

整数問題 ピタゴラス数

問題文全文(内容文):
$a,b,c$は自然数である.
$a,b,c$の最大公約数は1であり,$a^2+b^2=c^2$とする.

(1)$a,b$はどちらかは3の倍数であることを示せ.
(2)$a,b$はどちらかは4の倍数であることを示せ.
(3)$a,b,c$のどれかは5の倍数であることを示せ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は自然数である.
$a,b,c$の最大公約数は1であり,$a^2+b^2=c^2$とする.

(1)$a,b$はどちらかは3の倍数であることを示せ.
(2)$a,b$はどちらかは4の倍数であることを示せ.
(3)$a,b,c$のどれかは5の倍数であることを示せ.
投稿日:2020.07.11

<関連動画>

一橋大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数

(1)
$n^2$と$2n+1$は互いに素、示せ

(2)
$n^2+2$が$2n+1$の倍数となる$n$を求めよ

出典:1992年一橋大学 過去問
この動画を見る 

【数A】整数の性質:最大公約数と最小公倍数から3つの自然数の組(a,b,c)の決定

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の(A),(B),(C)を満たす3つの自然数の組(a,b,c)をすべて求めよ。ただし、 a<b<cとする。(A)a,b,cの最大公約数は7。(B)bとcの最大公約数は21、最小公倍 数は294。(C)aとbの最小公倍数は84。
この動画を見る 

福田の数学〜立教大学2022年経済学部第1問(3)〜整式の割り算と余り

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを定数とする。
3次式 $F(x)=x^3-6x+a$を2次式$G(x)=x^2 -3x+2$で割った余りを$R(x)$ とする。
G(x)がR(x)で割り切れるようなaの値をすべて求めよ。

2022立教大学経済学部過去問
この動画を見る 

分数の割り算

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{4}{7} \div \frac{3}{2} = (\frac{4}{7} \times ▢) \div (\frac{3}{2} \times ▢)=$
この動画を見る 

2024 慶應女子最初の一問 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2+b^2-2a-4b=20$を満たす
自然数(a,b)の組をすべて求めよ

2024慶應義塾女子高等学校
この動画を見る 
PAGE TOP