不等式の応用 数I 大阪星光学院 - 質問解決D.B.(データベース)

不等式の応用 数I 大阪星光学院

問題文全文(内容文):
xについての不等式$5x+2 \leqq 4a$を満たす最大の整数が3ときaの値の範囲を求めよ。

大阪星光学院高等学校
単元: #数学(中学生)#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xについての不等式$5x+2 \leqq 4a$を満たす最大の整数が3ときaの値の範囲を求めよ。

大阪星光学院高等学校
投稿日:2021.05.27

<関連動画>

ルートの計算

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt 4 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 8 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 9 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 18 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 16 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 32 = \sqrt{\quad} \times \sqrt{\quad} = $
$\sqrt 50 =$
$\sqrt ▢ = \sqrt{▢} \times \sqrt{▢} = $
この動画を見る 

おうぎ形と正方形 令和4年度 愛媛県ラスト問題(改) 数学 2022 入試問題100題解説83問目!

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積は?
*図は動画内参照

2022愛媛県
この動画を見る 

42を素因数分解の正答率  全国学力調査

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
42を素因数分解せよ

全国学力テスト中3
この動画を見る 

【数Ⅰ】【図形と計量】正弦、余弦定理応用2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$において,

$\dfrac{\sin A}{13}=\dfrac{\sin B}{8}=\dfrac{\sin C}{7}$

が成り立つとき,次のものを求めよ。
(1) 最も大きい角の大きさ (2) 最も小さい角の正接

この動画を見る 

素因数を1つ探せ

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 512^3+675^3+720^3$の素因数分解を1つ求めよ.
この動画を見る 
PAGE TOP