問題文全文(内容文):
数列$\{a_n\}$の隣り合う2つの項の差$b_n=a_{n+1}-a_n(n=1,2,3,・・・)$を
項とする.
数列$\{b_n\}$を,数列$\{a_n\}$の階差数列という.
また,数列$\{a_n\}$の階差数列を$\{b_n\}$とすると,
$n\geqq 2$のとき,$a_n=①$となる.
②数列$2,3,5,8,12,・・・$の一般項を求めよう.
数列$\{a_n\}$の隣り合う2つの項の差$b_n=a_{n+1}-a_n(n=1,2,3,・・・)$を
項とする.
数列$\{b_n\}$を,数列$\{a_n\}$の階差数列という.
また,数列$\{a_n\}$の階差数列を$\{b_n\}$とすると,
$n\geqq 2$のとき,$a_n=①$となる.
②数列$2,3,5,8,12,・・・$の一般項を求めよう.
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数列$\{a_n\}$の隣り合う2つの項の差$b_n=a_{n+1}-a_n(n=1,2,3,・・・)$を
項とする.
数列$\{b_n\}$を,数列$\{a_n\}$の階差数列という.
また,数列$\{a_n\}$の階差数列を$\{b_n\}$とすると,
$n\geqq 2$のとき,$a_n=①$となる.
②数列$2,3,5,8,12,・・・$の一般項を求めよう.
数列$\{a_n\}$の隣り合う2つの項の差$b_n=a_{n+1}-a_n(n=1,2,3,・・・)$を
項とする.
数列$\{b_n\}$を,数列$\{a_n\}$の階差数列という.
また,数列$\{a_n\}$の階差数列を$\{b_n\}$とすると,
$n\geqq 2$のとき,$a_n=①$となる.
②数列$2,3,5,8,12,・・・$の一般項を求めよう.
投稿日:2016.02.08





