数学「大学入試良問集」【17−3② 解けない漸化式とはさみうちの原理】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【17−3② 解けない漸化式とはさみうちの原理】を宇宙一わかりやすく

問題文全文(内容文):
$a_1=2,a_{n+1}=\displaystyle \frac{4a_n^2+9}{8a_n}(n=1,2,3,・・・)$で定義される数列$\{a_n\}$について以下の問いに答えよ。
(1)$a_n \gt \displaystyle \frac{3}{2}(n=1,2,3,・・・)$を証明せよ。
(2)$a_{n+1}-\displaystyle \frac{3}{2} \lt \displaystyle \frac{1}{3}\left[ a_n-\dfrac{ 3 }{ 2 } \right]^2(n=1,2,3,・・・)$を証明せよ。
(3)$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1}=\displaystyle \frac{4a_n^2+9}{8a_n}(n=1,2,3,・・・)$で定義される数列$\{a_n\}$について以下の問いに答えよ。
(1)$a_n \gt \displaystyle \frac{3}{2}(n=1,2,3,・・・)$を証明せよ。
(2)$a_{n+1}-\displaystyle \frac{3}{2} \lt \displaystyle \frac{1}{3}\left[ a_n-\dfrac{ 3 }{ 2 } \right]^2(n=1,2,3,・・・)$を証明せよ。
(3)$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
投稿日:2021.06.19

<関連動画>

大学入試問題#467「基本すぎる極限問題」 電気通信大学(2013) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{(1-\cos2x)\sin3x}{x^3}$

出典:2013年電気通信大学 入試問題
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第5問〜空間内の直線上の点列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 座標空間内において、ベクトル\\
\overrightarrow{ a }=(1,2,1), \overrightarrow{ b }=(1,1,-1), \overrightarrow{ c }=(0,0,1)\\
が定める直線\\
l:s\overrightarrow{ a }, l':t\overrightarrow{ b }+\overrightarrow{ c }\\
を考える。点A_1を原点(0,0,0)とし、点A_1から直線l'に下ろした垂線A_1B_1と\\
おく。次に、点B_1(t_1\overrightarrow{ b }+\overrightarrow{ c })から直線lに下ろした垂線をB_1A_2とおく。\\
同様に、点A_k(s_k\overrightarrow{ a })から直線l'に下ろした垂線をA_kB_k、点B_k(t_k\overrightarrow{ b }+\overrightarrow{ c })から直線l\\
に下ろした垂線をB_kA_{k+1}とする手順を繰り返して、点A_n(s_n\overrightarrow{ a }),B_n(t_n\overrightarrow{ b }+\overrightarrow{ c })\\
(nは正の整数)を定める。\\
(1)s_nを用いてs_{n+1}を表せ。\\
(2)極限値S=\lim_{n \to \infty}s_n, T=\lim_{n \to \infty}t_nを求めよ。\\
(3)(2)で求めたS,Tに対して、点A,BをそれぞれA(S\overrightarrow{ a }),B(T\overrightarrow{ b }+\overrightarrow{ c })とおくと、\\
直線ABは2直線l,l'の両方と直交することを示せ。
\end{eqnarray}

2022東北大学理系過去問
この動画を見る 

【高校数学】数Ⅲ:関数:逆関数と合成関数:逆関数の求め方【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の逆関数を求めよ。
$\displaystyle y=\frac{x-2}{3x+1}$
この動画を見る 

福田の数学〜千葉大学2022年理系第8問〜定積分で著された式の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{8}}\ 正の整数m,nに対して、\hspace{120pt}\\
A(m,n)=(m+1)n^{m+1}\int_o^{\frac{1}{n}}x^me^{-x}dx\\
とおく。\\
(1)e^{-\frac{1}{n}} \leqq A(m,n) \leqq 1 を証明せよ。\\
(2)各mに対して、b_m=\lim_{n \to \infty}A(m,n) を求めよ。\\
(3)各nに対して、c_n=\lim_{m \to \infty}A(m,n) を求めよ。
\end{eqnarray}

2022千葉大学理系過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(4)〜合成関数と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (4)数列\left\{a_n\right\},\left\{b_n\right\}(ただしa_1≠0かつa_1≠1)に対して1次関数\\
f_n(x)=a_nx+b_n (n=1,2,\ldots)\\
を定める。また、\alpha=a_1, \beta=b_1とおく。すべての自然数nに対して\\
(f_n◦f_1)(x)=f_{n+1}(x)\\
が成り立つとき、数列\left\{a_n\right\},\left\{b_n\right\}の一般項を\alphaと\betaの式で表すと\\
a_n=\boxed{\ \ ク\ \ }, b_n=\boxed{\ \ ケ\ \ }\\
となる。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP