大学入試問題#465「よくある極限問題」 電気通信大学2009 #極限 - 質問解決D.B.(データベース)

大学入試問題#465「よくある極限問題」 電気通信大学2009 #極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sin2x-2\sin\ x}{x\ \sin^2\ x}$

出典:2009年電気通信大学 入試問題
単元: #大学入試過去問(数学)#三角関数#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sin2x-2\sin\ x}{x\ \sin^2\ x}$

出典:2009年電気通信大学 入試問題
投稿日:2023.03.01

<関連動画>

【数Ⅲ】極限:次の無限級数の和を求めよう。Σ[n=1~∞](1/3)^n cosnπ

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(\dfrac{1}{3}\right)^n \cos n\pi$
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第3問〜漸化式と数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ rを実数とする。次の条件によって定められる数列\left\{a_n\right\},\left\{b_n\right\},\left\{c_n\right\}を考える。\\
a_1=r,\hspace{15pt}a_{n+1}=\frac{[a_n]}{4}+\frac{a_n}{4}+\frac{5}{6}\hspace{15pt}(n=1,2,3,\ldots)\\
b_1=r,\hspace{15pt}b_{n+1}=\frac{b_n}{2}+\frac{7}{12}\hspace{15pt}(n=1,2,3,\ldots)\\
c_1=r,\hspace{15pt}c_{n+1}=\frac{c_n}{2}+\frac{5}{6}\hspace{15pt}(n=1,2,3,\ldots)\\
ただし、[x]はxを超えない最大の整数とする。以下の問いに答えよ。\\
(1)\lim_{n \to \infty}b_nと\lim_{n \to \infty}c_nを求めよ。\\
(2)b_n \leqq a_n \leqq c_n\hspace{15pt}(n=1,2,3,\ldots)を示せ。\\
(3)\lim_{n \to \infty}a_nを求めよ。
\end{eqnarray}

2022早稲田大学理工学部過去問
この動画を見る 

いくつでしょうか?

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2^{\frac{1}{4}}・ 4^{\frac{1}{8}}・8^{\frac{1}{16}}・16^{\frac{1}{32}}……\infty $
これを解け.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題075〜浜松医科大学2017年度医学部第1問〜複素数の実部と虚部

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)|z| ≦ |z-($\sqrt 3 + i$)|, |z-$\bar{z}$| ≦ 1および|z-$2i$| ≦ 2を同時にみたす複素数zに対応する点の領域を複素数平面上に図示せよ。
(2)(1)で得られた領域内の点に対応する複素数のうち、実部が最大となるものを$\alpha$、実部と虚部の和が最大となるものを$\beta$とするとき、$\alpha$と$\beta$を求めよ。
(3)次の式で定義される$w_n$の実部を$R_n$とするとき、無限級数$\displaystyle\sum_{n=1}^{\infty}R_n$の和を求めよ。
$w_n=\displaystyle\frac{\{1+(2-\sqrt 3)i\}(\sqrt 3+i)^{3(n-1)}}{2^{4(n-1)}}$ $(n=1,2,3,\dots)$

2017浜松医科大学医学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題090〜名古屋大学2018年度理系第1問〜定積分と不等式と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 自然数nに対し、定積分$I_n$=$\displaystyle\int_0^1\frac{x^n}{x^2+1}dx$を考える。このとき、次の問いに答えよ。
(1)$I_n$+$I_{n+2}$=$\frac{1}{n+1}$を示せ。
(2)0≦$I_{n+1}$≦$I_n$≦$\frac{1}{n+1}$を示せ。
(3)$\displaystyle\lim_{n \to \infty}nI_n$ を求めよ。
(4)$S_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{2k}$ とする。このとき(1), (2)を用いて$\displaystyle\lim_{n \to \infty}S_n$ を求めよ。

2018名古屋大学理系過去問
この動画を見る 
PAGE TOP