息抜き整数問題(でもそんなに簡単じゃないよ) - 質問解決D.B.(データベース)

息抜き整数問題(でもそんなに簡単じゃないよ)

問題文全文(内容文):
$a,b(1 \leqq a \lt b)$の最小公倍数が$10^n$となる自然数$(a,b)$の組は何通りあるか求めよ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b(1 \leqq a \lt b)$の最小公倍数が$10^n$となる自然数$(a,b)$の組は何通りあるか求めよ
投稿日:2019.10.06

<関連動画>

割り算 余り

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2022^2$を$2021$で割った余りは?
この動画を見る 

【高校数学】素数と素因数分解~素数の基礎と無限にある証明~ 5-2【数学A】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\sqrt{ 540n }$が自然数になるような最小の自然数$n$を求めよ。
この動画を見る 

高校入試にしては頑張った出題 愛光学園

アイキャッチ画像
単元: #整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{180-3n}$が整数となる最小の①自然数n②正の有理数nを求めよ.

愛光学園過去問
この動画を見る 

岡山県立大 整数問題 合同式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#岡山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数

(1)
$n(n^2+5)$は6の倍数であることを示せ

(2)
$3^{6n}$を7で割ると余りが1であることを示せ

出典:2008年岡山県立大学 過去問
この動画を見る 

合同式 7の倍数でない証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+2n-2$は$7$の倍数でないことを示せ.
この動画を見る 
PAGE TOP