息抜き整数問題(でもそんなに簡単じゃないよ) - 質問解決D.B.(データベース)

息抜き整数問題(でもそんなに簡単じゃないよ)

問題文全文(内容文):
$a,b(1 \leqq a \lt b)$の最小公倍数が$10^n$となる自然数$(a,b)$の組は何通りあるか求めよ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b(1 \leqq a \lt b)$の最小公倍数が$10^n$となる自然数$(a,b)$の組は何通りあるか求めよ
投稿日:2019.10.06

<関連動画>

最小公倍数 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n,A,B$を自然数とする.
$A$と$B(1\leqq A\lt B)$の最小公倍数は$10^n$である.
$(A,B)$の組数を求めよ.
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.これを解け.
$m^6+295=2^n$
この動画を見る 

福田のおもしろ数学569〜奇数回握手をした人の人数は偶数か

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

すべての人が何人かの人と握手したとする。

このとき「奇数回握手をした人」を数えると

その人数は必ず偶数になることを

証明してください。
    
この動画を見る 

約数の個数とその総和 2024明大中野

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
・正の約数を3個だけ持つ
・その約数の総和は871
この自然数を求めよ。

2024明治大学付属中野高等学校
この動画を見る 

2023高校入試解説24問目  二乗の和で表せ③ 昭和学院秀英(改)

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
7225は4つの自然数で2乗の和で表せる。
例を1つあげよ。

2023昭和学院秀英高等学校
この動画を見る 
PAGE TOP