福井大 漸化式 - 質問解決D.B.(データベース)

福井大 漸化式

問題文全文(内容文):
一般項を求めよ$(n$自然数$)$
$a_1=1$
$a_{n+1}=\displaystyle \frac{3}{n}S_n$

出典:福井大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
一般項を求めよ$(n$自然数$)$
$a_1=1$
$a_{n+1}=\displaystyle \frac{3}{n}S_n$

出典:福井大学 過去問
投稿日:2019.12.15

<関連動画>

例のアレ

アイキャッチ画像
単元: #数列とその和(等差・等比・階差・Σ)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{1}{1×2×3×4}+\displaystyle \frac{1}{2×3×4×5}+\displaystyle \frac{1}{3×4×5×6}$$+…+\displaystyle \frac{1}{6×7×8×9}+\displaystyle \frac{1}{7×8×9×10}$
この動画を見る 

福田の一夜漬け数学〜数列・群数列(1)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
群数列 $1\ | \ 3 5 \ |\ 7 9 11 \ |\ 13 15 17 19 \ | \ 21 \cdots$について次を求めよ。
(1)第$n$群の初項
(2)第$n$群の総和
(3)301は第何群の何番目か


正の奇数の列$\left\{a_n\right\}$を次のように第$k$群に$2^{k-1}$個の項を含むように分ける。
$1\ | \ 3 5 \ |\ 7 9 11 13 \ | \ 15 17 19 21 23 25 27 29 \ | \ 31 \cdots$
(1)第$n$群の初項を求めよ。
(2)777は第何群の何番目か。
この動画を見る 

福田の一夜漬け数学〜確率漸化式(3)〜東京大学の問題に挑戦(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 片面を白色に、もう片面を黒色に塗った正方形の板が3枚ある。
この3枚の板を机の上に並べ、次の操作を繰り返し行う。
サイコロをふり、1か2の目が出たら左端の板を裏返し、3か4が出たら中央の
板を裏返し、5か6が出たら右端の板を裏返す。
(1)「白白白」から始めて、3回の操作の結果「黒白白」となる確率を求めよ。
(2)「白白白」から始めて、$n$回の操作の結果「黒白白」または「白黒白」または
「白白黒」となる確率を$p_n$とする。$p_{2k+1}$を求めよ。($k$は自然数とする)
この動画を見る 

【短時間でマスター!!】和と一般項の問題の求め方を解説!(数列)〔現役講師解説、数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
数学2B
和と一般項
数列$\{a_n\}$の初項から第$n$項までの和$S_n$が$S_n=3n(n+5)$で表されるとき、一般項$a_n$を求めよ。
この動画を見る 

熊本大(理)漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
一般項を求めよ
$a_1=\displaystyle \frac{1}{8}$

$(4n^2-1)(a_n-a_{n+1})=8(n^2-1)a_na_{n+1}$

熊本大学理学部過去問
この動画を見る 
PAGE TOP