確率の基本問題 成蹊大 - 質問解決D.B.(データベース)

確率の基本問題 成蹊大

問題文全文(内容文):
2023成蹊大学過去問題
5人で1回だけジャンケン、次の確率を求めよ.
①1人だけ勝つ確率
②2人だけ勝つ確率
③あいこの確率
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023成蹊大学過去問題
5人で1回だけジャンケン、次の確率を求めよ.
①1人だけ勝つ確率
②2人だけ勝つ確率
③あいこの確率
投稿日:2023.07.16

<関連動画>

【高校数学】  数A-5  場合の数② ・ 正の約数編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①48の正の約数は何個?
②48の正の約数の総和はいくつ?
③600の正の約数は何個?
④600の正の約数の総和はいくつ?
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第1問PART1〜格子折れ線の個数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面において、x座標およびy座標が共に整数であるような点を格子点と呼ぶ。xy平面上の相異なる2つの格子点を端点とする折れ線のうち、x座標またはy座標が等しい格子点どうしを結ぶ線分のみから構成され、かつ同じ点を2度通ることはないものを、格子折れ線と呼ぶ。ここで格子折れ線の向きは考慮せず、端点および通過する点がすべて等しい格子折れ線は同じものとする。また、自然数$n$に対し、
0≦$x$≦$n$ かつ 0≦$y$≦1
を満たす格子点全体の集合を$V_n$とする。さらに、$V_n$に属する格子点をすべて通り、かつ$V_n$に属さない格子点は通らない格子折れ線全体の集合を$L_n$とする。たとえば、7つの格子点(0,1),(0,0),(1,0),(1,1),(4,1),(4,0),(2,0)を順に結んだ折れ線は$L_4$に属する。このとき、以下の問いに答えよ。
(1)$L_1$および$L_2$に属する格子折れ線をすべて図示せよ。
(2)$L_4$に属する格子折れ線のうち、両端点の$x$座標の差が3以上となるものをすべて図示せよ。
(3)$n$≧3のとき、$L_n$に属する格子折れ線のうち、両端点の$x$座標の差が$n$-2となるものの個数を求めよ。
(4)$L_n$に属する格子折れ線の個数$l_n$を$n$を用いて表せ。
この動画を見る 

【数学A】確率『反復試行の確率』

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
1枚のコインを6回投げるとき、次の確率を求めよ。
(1)表が4回出る確率
(2)表が5回以上出る確率
(3)表の出る回数が3回以下である確率
この動画を見る 

これを繰り返すと0になる?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#その他#数学(高校生)#その他
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
10個球を入れて、1個取り出す。
これを無限回すると箱の中身は0なのか?
この動画を見る 

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第3問〜確率漸化式と無限級数の和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

$0\lt p\lt 1$とする。

表が出る確率が$p$、裏が出る確率が$1-p$である

$1$枚のコインを使って次のゲームを行う。

・ゲームの開始時点で点数は$0$点

・コインを投げ続け、表が出るごとに$1$点加算し、
 裏が出たときは点数はそのまま

・$2$回続けて裏が出たらゲームは終了。

$0$以上の整数$n$に対し、ゲームが終わったときに

$n$点となっている確率を$Q_n$とする。

(1)$Q_1,Q_2$を$p$を用いて表せ。

(2)$Q_2$を$n$と$p$を用いて表せ。

(3)$0\lt x\lt 1$を満たす実数$x$に対して次式が

成り立つことを示せ。

$\dfrac{1}{(1-x)^2}=\displaystyle \sum_{k=0}^{\infty}(n+1)x^n$

必要ならば$0\lt x \lt 1$のとき

$\displaystyle \lim_{n\to\infty} nx^n=0$であることを

証明なしで使ってもよい。

(4)無限級数$\displaystyle \sum_{n=0}^{\infty} nQn$を$p$を用いて表せ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る 
PAGE TOP