整数問題 ラ・サール 2023 - 質問解決D.B.(データベース)

整数問題  ラ・サール 2023

問題文全文(内容文):
3ケタの奇数で各ケタの数の積が252となるものをすべて求めよ。

2023 ラ・サール学園
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
3ケタの奇数で各ケタの数の積が252となるものをすべて求めよ。

2023 ラ・サール学園
投稿日:2023.03.14

<関連動画>

信州大学 整数問題 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
信州大学過去問題
$4^{2n-1}+3^{n+1}$は13の倍数であることを示せ。(n自然数)
この動画を見る 

約数の個数とその総和 2024明大中野

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
・正の約数を3個だけ持つ
・その約数の総和は871
この自然数を求めよ。

2024明治大学付属中野高等学校
この動画を見る 

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
$1^{2001}+2^{2001}+3^{2001}+\cdots+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ.
この動画を見る 

一工夫必要な不定方程式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数(a,b)の組は何組あるか?

$3ab+4a-b=684$
この動画を見る 

数検準1級2次過去問【2020年12月】5番:整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$boxed{5}$ $m,n\in IN$とする.

(1)$100!=2^m \times (奇数)$と表したときの$m$の値を求めよ.
(2)$50!=n^2\times (互いに異なる素数の積)$と表したときの
素因数分解した形で表せ.
この動画を見る 
PAGE TOP