【数C】【平面上のベクトル】ベクトルの基本計算1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上のベクトル】ベクトルの基本計算1 ※問題文は概要欄

問題文全文(内容文):
次の等式を同時に満たすベクトル $\vec{ x }$ ,$\vec{ y }$を $\vec{ a }$ ,$\vec{ b }$を用いて表せ。


(1)
$2\vec{ x }+\vec{ y }=\vec{ a } $
$\vec{ x }-\vec{ y }=\vec{ b }$

(2)
$2\vec{ b }-3\vec{ y }=\vec{ a }+\vec{ b }$
$\vec{ x }+\vec{ y }=\vec{ a }-\vec{ b }$

チャプター:

0:00 オープニング
0:06 問題文
0:15 (1)解説
1:41 (2)解説

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を同時に満たすベクトル $\vec{ x }$ ,$\vec{ y }$を $\vec{ a }$ ,$\vec{ b }$を用いて表せ。


(1)
$2\vec{ x }+\vec{ y }=\vec{ a } $
$\vec{ x }-\vec{ y }=\vec{ b }$

(2)
$2\vec{ b }-3\vec{ y }=\vec{ a }+\vec{ b }$
$\vec{ x }+\vec{ y }=\vec{ a }-\vec{ b }$

投稿日:2025.02.01

<関連動画>

【数B】ベクトル:平行四辺形状のマス目上にあるベクトルを表そう!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
Adプラ数学B問題606
次に図示された2つのベクトル$\overrightarrow{p},\overrightarrow{q}$を$\overrightarrow{a},\overrightarrow{b}$で表せ。
この動画を見る 

福田の数学〜東京工業大学2023年理系第5問(PART2)〜4直線に接する球面の決定

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。

2023東京工業大学理系過去問
この動画を見る 

数検準1級1次過去問(3番 ベクトル)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#平面上のベクトルと内積#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
3⃣
$|\vec{ a }|=\sqrt{10}$ , $|\vec{ b }|=\sqrt{5}$ , $\vec{ a }・\vec{ b } = -\sqrt{2}$
$ \vec{ a }⊥(\vec{ a }+t\vec{ b })$
のとき$|\vec{ a }+t\vec{ b }|$を求めよ。
この動画を見る 

【数学B/平面ベクトル】ベクトルの内積(公式と使い方)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2つのベクトル$\vec{ a },\vec{ b }$について、$\vec{ a }$と$\vec{ b }$の内積を求めよ。
(1)$|\vec{ a }|=2,|\vec{ b }|=3,\theta=45^{ \circ }$
(2)$|\vec{ a }|=1,|\vec{ b }|=4,\theta=150^{ \circ }$
この動画を見る 

【高校数学】 数B-13 ベクトルの内積②

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\overrightarrow{ 0 }$出ない2つのベクトル$\overrightarrow{ a }・\overrightarrow{ b }$のなす角を$\theta$とすると$\overrightarrow{ a }//\overrightarrow{ b } \iff \overrightarrow{ a }・\overrightarrow{ b }=$①____または
$\overrightarrow{ a }・\overrightarrow{ b }=$②____$\overrightarrow{ a } \bot \overrightarrow{ b } \iff \overrightarrow{ a }・\overrightarrow{ b }=$③____

◎右の図の直角三角形について、次の内積を求めよう。

④$\overrightarrow{ OA } ・ \overrightarrow{ OB }$

⑤$\overrightarrow{ OA } ・ \overrightarrow{ AB }$

⑥$\overrightarrow{ AB } ・ \overrightarrow{ OB }$

⑦$\overrightarrow{ BA } ・ \overrightarrow{ OA }$
この動画を見る 
PAGE TOP