神戸薬 放物線と2本の接線で囲まれた面積 積分 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

神戸薬 放物線と2本の接線で囲まれた面積 積分 Mathematics Japanese university entrance exam

問題文全文(内容文):
神戸薬科大学過去問題
y=x上のT(t,t)から$y=x^2+1$へ2本の接線を引く。
接点をA,B。放物線とTA,TBで囲まれた面積をSとする。
Sの最小値
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
神戸薬科大学過去問題
y=x上のT(t,t)から$y=x^2+1$へ2本の接線を引く。
接点をA,B。放物線とTA,TBで囲まれた面積をSとする。
Sの最小値
投稿日:2018.10.13

<関連動画>

福田の数学〜神戸大学2025理系第1問〜曲線と直線の共有点の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$k$を実数とする。

$f(x)$と$g(x)$を

$f(x) = \vert x^3-x \vert,\quad g(x)=k(x+1)$

とおき、曲線$y=f(x)$を$C$、

直線$y=g(x)$を$\ell$とする。以下の問いに答えよ。

(1)曲線$C$の概形をかけ。

ただし、関数$f(x)$の極大値を調べる必要はない。

(2)曲線$C$と直線$\ell$がちょうど$4$つの

共有点をもつような$k$の値を求めよ。

$2025$年神戸大学理系過去問題
この動画を見る 

【数学Ⅱ】複素数『1の3乗根ω』の性質と問題演習

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$x^3-1=0$の虚数解の1つを$\omega$とするとき、次の式の値を求めよ。
(1)
$\omega^4+\omega^2+1$

(2)
$1+\displaystyle \frac{1}{\omega}+\displaystyle \frac{1}{\omega^2}$
この動画を見る 

【高校数学】 数Ⅱ-138 対数関数④・不等式編

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式を解こう。

①$\log_3 x \lt \displaystyle \frac{3}{2}$

②$\log_{\frac{1}{3}}x \geqq 2$

③$\log_3(x+2) \lt 2$

④$\log_2(x+1)+\log_2(x-2) \geqq 2$

⑤$\log_{\frac{1}{2}}(x-1)+\log_{\frac{1}{2}}(x-2) \geqq -1$
この動画を見る 

大学入試の因数分解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#複素数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
整数、実数、複素数の各範囲で因数分解せよ。
$x^4-x^2-2=$
この動画を見る 

杏林大(医)極限値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{\sqrt{ \cos5x }-\sqrt{ \cos3x }}{x^2}$

出典:杏林大学医学部 過去問
この動画を見る 
PAGE TOP