一橋大 整式の剰余 - 質問解決D.B.(データベース)

一橋大 整式の剰余

問題文全文(内容文):
$f(z)=z^{2n}+z^n+1$を

$z^2+z+1$で割ったあまり
$z^2-z+1$で割ったあまり

を求めよ.$n$は自然数である.

一橋大学過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(z)=z^{2n}+z^n+1$を

$z^2+z+1$で割ったあまり
$z^2-z+1$で割ったあまり

を求めよ.$n$は自然数である.

一橋大学過去問
投稿日:2020.06.14

<関連動画>

さくっと解こう

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,y,zは相異なる実数である.
$x+\dfrac{1}{y}=y+\dfrac{1}{z}=z+\dfrac{1}{x}$のとき,
$x^2y^2z^2$の値を求めよ.
この動画を見る 

ε-N論法 #3 lim n/n+2 =1

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{n}{n+2}=1$を
$ε-N$論法を利用して示せ.
この動画を見る 

【高校数学】 数Ⅱ-12 恒等式①

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の等式がxについての恒等式となるように、定数a、b、cの値を定めよう。

①$(3a+b)x+(2a-b-10)=0$

②$a(x-3)+b(x+1)=5x-3$

③$x^2=a(x-2)^2+b(х-2)+c$
この動画を見る 

整式の剰余 大分大(医)その2

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
(1)$x^n$を$x^5-1$で割った余りを求めよ.
(2)$x^{4n}+x^{3n}+x^{2n}+x^n$を$x^4+x^3+x^2+x+1$で割った余りを求めよ.

2005大分大(医)過去問
この動画を見る 

福田のおもしろ数学572〜対称式に関する等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$x+y+z=0$のとき次を証明して下さい。

$\dfrac{x^2+y^2+z^2}{2} \times \dfrac{x^5+y^5+z^5}{5}=\dfrac{x^7+y^7+z^7}{7}$
    
この動画を見る 
PAGE TOP