東大入試問題、場合の数、頑張れば、中学生、中学受験生にも解けるぞ Japanese university entrance exam questions Tokyo University - 質問解決D.B.(データベース)

東大入試問題、場合の数、頑張れば、中学生、中学受験生にも解けるぞ Japanese university entrance exam questions Tokyo University

問題文全文(内容文):
nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える。ただし、1個のボールも入らない箱があってもよいものとする。以下に述べる4つの場合について、それぞれ相異なるなる入れ方の総数を求めたい。

(1)1からnまで異なる番号のついたこのボールを、A,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか 。

(2)互いに区別のつかないn個のボールを、A,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(3) 1からnまで異なる番号のついたn個のボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(4)nが6の倍数6mであるとき、n個の互いに区別のつかないボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。

東大過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える。ただし、1個のボールも入らない箱があってもよいものとする。以下に述べる4つの場合について、それぞれ相異なるなる入れ方の総数を求めたい。

(1)1からnまで異なる番号のついたこのボールを、A,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか 。

(2)互いに区別のつかないn個のボールを、A,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(3) 1からnまで異なる番号のついたn個のボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(4)nが6の倍数6mであるとき、n個の互いに区別のつかないボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。

東大過去問
投稿日:2018.03.26

<関連動画>

福田の数学〜慶應義塾大学薬学部2025第4問〜確率と期待値と無限級数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

当たりくじが$3$本入っている$9$本のくじがある。
このくじを無作為に$1$本引き、
当たりくじかどうかを確認してから元に戻す試行を、
当たりくじが出るまで繰り返す。
当たりくじが出たときのみ得点を得ることができ、
$n$回目にの試行で当たりくじが出た場合、
得られる得点は$50n$点とする。

$n$回目に得られる得点の期待値を$E_n$とする。
ただし、$n$は自然数とする。

(1)$5$回目までに当たりくじが出る確率は$\boxed{ノ}$である。

(2)$\dfrac{E_n}{E_{n+1}}=\dfrac{10}{7}$であるとき、$n=\boxed{ハ}$である。

(3)$\displaystyle \lim_{n\to\infty}\dfrac{E_n}{E_{n+1}}$を求めると$\boxed{ヒ}$である。

(4)$\displaystyle \sum_{k=1}^{n}E_k$を$n$の式で表すと$\boxed{フ}$であり、

$\displaystyle \sum_{k=1}^{\infty}E_k$を求めると$\boxed{ヘ}$である。

ただし、$\vert r \vert \lt 1$を満たす実数$r$に対し、

$\displaystyle \lim_{n\to\infty}n \times r^n=0$が

成り立つこととする。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 

【数学A】一橋大学文系2010 確率の問題(解説)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$n$を3以上の自然数とする
サイコロを$n$回投げ、出た目の数をそれぞれ順に$X_1,X_2,$・・・$,X_n$とする
$i=2,3,…n$に対して$Xi=Xi-1$となる事象を$Ai$ことする。
(1)$A_2,A_3,…,A_n$のうち少なくとも1つが起こる確率$pn$は?
(2)$A_2,A_3,…,A_n$少なくとも2つが起こる確率$gn$は?
この動画を見る 

福田の数学〜東京大学2025文系第3問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

白玉$2$個が横に並んでいる。

投げたとき表と裏の出る確率が

それぞれ$\dfrac{1}{2}$のコインを用いて、

次の手順 (*) をくり返し、

白玉または黒玉を横一列に並べていく。

手順(*)

$\quad$コインを投げ、

$\quad$表が出たら白玉、裏が出たら黒玉を、

$\quad$それまでに並べられている一番右にある玉の

$\quad$右隣におく。

$\quad$そして、新しくおいた玉の色が

$\quad$その$1$つ左の玉の色と異なり、

$\quad$かつ$2$つ左の玉の色と一致するときには、

$\quad$新しくおいた玉の$1$つ左の玉を新しくおいた玉と

$\quad$同じ色の玉にとりかえる。

例えば、手順(*)を$2$回行いコインが裏、表の順に

出た場合には、白玉が$4$つ並ぶ。

正の整数$n$に対して、手順(*)を$n$回行った時点での

$(n + 2)$個の玉の並び方を考える。

(1)$n = 3$のとき、

右から$2$番目の玉が白玉である確率を求めよ。

(2)$n$を正の整数とする。

右から$2$番目の玉が白玉である確率を求めよ。

(3)$n$を正の整数とする。

右から$1$番目と$2$番目の玉がともに白玉である確率を求めよ。

$2025$年東京大学文系過去問題
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第1問〜整数解と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 袋の中に1から5までの番号をつけた5個の玉が入っている。この袋から玉を1個取り出し、番号を調べてから元に戻す試行を、4回続けて行う。n回目(1≦n≦4)に取り出された玉の番号を$r_n$とするとき、
・$r_1$+$r_2$+$r_3$+$r_4$≦8 となる確率は$\boxed{\ \ (ア)\ \ }$
・$\displaystyle\frac{4}{r_1r_2}$+$\displaystyle\frac{2}{r_3r_4}$=1となる確率は$\boxed{\ \ (イ)\ \ }$
である。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題087〜一橋大学2018年度文系第3問〜サイコロの目の積がkとなる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 3個のさいころを投げる。
(1)出た目の積が6となる確率を求めよ。
(2)出た目の積がkとなる確率が$\frac{1}{36}$であるようなkを全て求めよ。

2018一橋大学文系過去問
この動画を見る 
PAGE TOP