【数学】横浜国立大2018年度(理系前期)第5問の解説 - 質問解決D.B.(データベース)

【数学】横浜国立大2018年度(理系前期)第5問の解説

問題文全文(内容文):
横浜国立大(理系)2018年度前期入試
第5問
xy平面上に双曲線$C1:y=\dfrac{1}{x}$がある。C1上の点P$(t,\dfrac{1}{t})$(ただし$t>0$)におけるC1の接線をlとする。
放物線$C2:y=x^2+ax+b$(a,bは実数)は点Pを通りC1と第3象限において共有点をただ一つ持つ。C2とlで囲まれた部分の面積をSとする。
(1) lの方程式を求めよ。
(2) a,bをそれぞれtの式で表せ。
(3) Sをtの式で表せ。
(4) tが正の実数全体を動くとき、Sの最小値を求めよ。
チャプター:

0:00 オープニング
0:30 (1)の解説
1:21 (2)の解説
3:00 (3)の解説
4:38 (4)の解説

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大(理系)2018年度前期入試
第5問
xy平面上に双曲線$C1:y=\dfrac{1}{x}$がある。C1上の点P$(t,\dfrac{1}{t})$(ただし$t>0$)におけるC1の接線をlとする。
放物線$C2:y=x^2+ax+b$(a,bは実数)は点Pを通りC1と第3象限において共有点をただ一つ持つ。C2とlで囲まれた部分の面積をSとする。
(1) lの方程式を求めよ。
(2) a,bをそれぞれtの式で表せ。
(3) Sをtの式で表せ。
(4) tが正の実数全体を動くとき、Sの最小値を求めよ。
投稿日:2022.02.21

<関連動画>

東北大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^a-2^n=1$ $a,b \varepsilon Z$

(1)
$a,b$はともに正、示せ

(2)
$b \gt 1$のとき、$a$偶数

(3)
$(a,b)$すべて求めよ

出典:2018年東北大学 過去問
この動画を見る 

n進法に苦手意識ある人必見!難しいことはありません【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を4以上の自然数とする。数2,12,1331がすべて$n$進法で表記されているとして,

$2^{12}=1331$

が成り立っている。このとき$n$はいくつか。十進法で答えよ。

京都大過去問
この動画を見る 

大学入試問題#38 日本大学(2021) 三角関数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \leqq \theta \leqq \displaystyle \frac{5}{6}\pi$において
方程式
$3\sin(\theta+\displaystyle \frac{\pi}{3})+5\ \cos(\theta-\displaystyle \frac{\pi}{6})=0$を解け。

出典:2021年日本大学 入試問題
この動画を見る 

頑張れば小中学生にもできる 東大入試問題 数学 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
3人でジャンケン
負けた人は以後参加できない。
k回目に1人の勝者が決まる確率を求めよ.

東大過去問
この動画を見る 

【数A】整数の性質:慶應義塾大学 1の位の数は?

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
一の位の数(合同式の利用):十進法の表記法で考えよう。
(1)$2^{100}$の一の位の数 字を求めよう。
(2)$3^{1000}$の一の位の数字を求めよう。
(3)$a=3^{33}$とするとき、$3^a$ の一の位の数字を求めよう。
この動画を見る 
PAGE TOP