【高校数学】原因の確率~不良品の確率など2題~ 2-9【数学A】 - 質問解決D.B.(データベース)

【高校数学】原因の確率~不良品の確率など2題~ 2-9【数学A】

問題文全文(内容文):
1⃣
ある製品を製造する工場A、Bがあり、Aの製品には3%、Bの製品には4%の不良品が
含まれている。
Aの製品とBの製品を、4:5の割合で混ぜた大量の製品の中から1個を取り出すとき、
次の確率を求めよ。
(a) それが不良品である確率
(b) 不良品であったときに、それがAの製品である確率

-----------------

2⃣
箱Aには白玉4個と赤玉5個、箱Bには白玉3個と赤玉2個と青玉7個が入っている。
まず、任意に1つの箱を選び、次にその箱の中から玉を1個取り出すものとする。
取り出された玉の色が白であったとき、それが箱Bから取り出された確率を求めよ。
チャプター:

00:00 はじまり

00:21 問題だよ

00:31 問題解説(1)

04:34 問題解説(2)

07:57 まとめ

08:20 問題と答え

単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
ある製品を製造する工場A、Bがあり、Aの製品には3%、Bの製品には4%の不良品が
含まれている。
Aの製品とBの製品を、4:5の割合で混ぜた大量の製品の中から1個を取り出すとき、
次の確率を求めよ。
(a) それが不良品である確率
(b) 不良品であったときに、それがAの製品である確率

-----------------

2⃣
箱Aには白玉4個と赤玉5個、箱Bには白玉3個と赤玉2個と青玉7個が入っている。
まず、任意に1つの箱を選び、次にその箱の中から玉を1個取り出すものとする。
取り出された玉の色が白であったとき、それが箱Bから取り出された確率を求めよ。
投稿日:2020.08.25

<関連動画>

一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回ふって
(1)$n$回目にはじめて積が$12$になる確率を求めよ.
(2)積が$12$になる確率を求めよ.

1996一橋大過去問
この動画を見る 

福田の数学〜東京大学2025文系第3問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

白玉$2$個が横に並んでいる。

投げたとき表と裏の出る確率が

それぞれ$\dfrac{1}{2}$のコインを用いて、

次の手順 (*) をくり返し、

白玉または黒玉を横一列に並べていく。

手順(*)

$\quad$コインを投げ、

$\quad$表が出たら白玉、裏が出たら黒玉を、

$\quad$それまでに並べられている一番右にある玉の

$\quad$右隣におく。

$\quad$そして、新しくおいた玉の色が

$\quad$その$1$つ左の玉の色と異なり、

$\quad$かつ$2$つ左の玉の色と一致するときには、

$\quad$新しくおいた玉の$1$つ左の玉を新しくおいた玉と

$\quad$同じ色の玉にとりかえる。

例えば、手順(*)を$2$回行いコインが裏、表の順に

出た場合には、白玉が$4$つ並ぶ。

正の整数$n$に対して、手順(*)を$n$回行った時点での

$(n + 2)$個の玉の並び方を考える。

(1)$n = 3$のとき、

右から$2$番目の玉が白玉である確率を求めよ。

(2)$n$を正の整数とする。

右から$2$番目の玉が白玉である確率を求めよ。

(3)$n$を正の整数とする。

右から$1$番目と$2$番目の玉がともに白玉である確率を求めよ。

$2025$年東京大学文系過去問題
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第2問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large{\boxed{2}}}$与えられた図形の頂点から無作為に異なる3点を選んで三角形を作る試行を考える。ただし、
この試行におけるすべての根元事象は同様に確からしいとする。
(1)正n角形における前事象を$U_n$とし、その中で面積が最小の三角形ができる
事象を$A_n$とする。ただし、$n$は$n \geqq 6$を満たす自然数とする。
$(\textrm{i})$事象$U_6$において、事象$A_6$の確率は$\boxed{\ \ ス\ \ }$である。
$(\textrm{ii})$事象$U_n$において、事象$A_n$の確率をnの式で表すと$\boxed{\ \ セ\ \ }$であり、
この確率が$\frac{1}{1070}$以下になる最小の$n$の値は$\boxed{\ \ ソ\ \ }$である。
$(\textrm{iii})$事象$U_n \cap \bar{ A_n }$において、面積が最小となる三角形ができる確率をnの式で
表すと$\boxed{\ \ タ\ \ }$である。
(2)1辺の長さが$\sqrt2$である立方体における全事象をVとすると、事象$V$に含まれ
るすべての三角形の面積の平均値は$\boxed{\ \ チ\ \ }$である。

2021慶應義塾大学薬学部過去問
この動画を見る 

【共通テスト】数学1A「場合の数・確率」の解法まとめ

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#その他#勉強法#その他#勉強法#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
【共通テスト】数学1A「場合の数・確率」の解法を解説していきます。
この動画を見る 

福田の数学〜立教大学2022年理学部第1問(2)〜余事象と確率の加法定理

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
下図のように1から9までの数字が1つずつ記入された、9枚のカードがある。
$\boxed{1}\ \ \ \boxed{2}\ \ \ \boxed{3}\ \ \ \boxed{4}\ \ \ \boxed{5}\ \ \ \boxed{6}\ \ \ \boxed{7}\ \ \ \boxed{8}\ \ \ \boxed{9}$
これら9枚のカードから同時に取り出した3枚のカードの数字の積が
10で割り切れる確率は$\boxed{イ}$である。

2022立教大学理学部過去問
この動画を見る 
PAGE TOP