【数Ⅲ】部分積分【公式不要!微分して被積分関数になるものを作り出せ】 - 質問解決D.B.(データベース)

【数Ⅲ】部分積分【公式不要!微分して被積分関数になるものを作り出せ】

問題文全文(内容文):
$ (1)\displaystyle \int x\cos x dxを求めよ.$
$ (2)\displaystyle \int (2x+1)\sin 3x dxを求めよ.$
$ (3)\displaystyle \int \log x dx,\displaystyle \int x\log x dx,\displaystyle \int \log(2x+1)dxを求めよ.$
$ (4)\displaystyle \int_{0}^{\pi} x^2\sin x dxを求めよ.$
$ (5)\displaystyle \int_{0}^{\pi} e^x \sin x dxを求めよ.$
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
$ (1)\displaystyle \int x\cos x dxを求めよ.$
$ (2)\displaystyle \int (2x+1)\sin 3x dxを求めよ.$
$ (3)\displaystyle \int \log x dx,\displaystyle \int x\log x dx,\displaystyle \int \log(2x+1)dxを求めよ.$
$ (4)\displaystyle \int_{0}^{\pi} x^2\sin x dxを求めよ.$
$ (5)\displaystyle \int_{0}^{\pi} e^x \sin x dxを求めよ.$
投稿日:2023.01.28

<関連動画>

大学入試問題#98 千葉大学医学部(2018) 積分・極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#不定積分#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$f(x)=\displaystyle \int_{0}^{x}e^{t-x}\sin(t+x)dt$を求めよ。


(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(x)}{x}$を求めよ。

出典:2018年千葉大学 入試問題
この動画を見る 

大学入試問題#493「詰みまでの構想力が必要」 東京理科大学(2001) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int (t\sqrt{ 1+t^2 }+\displaystyle \frac{t^3}{\sqrt{ 1+t^2 }})dt$

出典:2001年東京理科大学 入試問題
この動画を見る 

【数Ⅲ-147】積分特訓②

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分特訓➁)

①$\int\frac{1}{e^x-e^{-x}}dx$

➁$\int\frac{e^x-e^{-x}}{e^x+e^{-x}}dx$

③$\int\cos^5xdx$
この動画を見る 

【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分3 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1) $\displaystyle \int \frac{\sqrt x}{\sqrt[4]{x^3}+1}~dx$
(2) $\displaystyle \int \frac{dx}{x\sqrt{x+1}}$
(3) $\displaystyle \int \log|x^2-1|~dx$
(4) $\displaystyle \int \frac{e^x}{e^x-e^{-x}}~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int \tan^4x~dx$
(2) $\displaystyle \int \frac{dx}{\sin{2x}}$
(3) $\displaystyle \int \frac{1}{1-\sin x}~dx$
(4) $\displaystyle \int (\sin^3x-\cos^3x)~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int e^x\cos x~dx$
(2) $\displaystyle \int e^{-x}\sin x~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int \sin x\log(\cos x)~dx$
(2) $\displaystyle \int x\tan^2x~dx$
(3) $\displaystyle \int \frac{1}{1-e^x}~dx$
この動画を見る 

福田のおもしろ数学234〜区分求積の公式の変形その2

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n}) $$ = \displaystyle \int_0^1 f(x) dx $ である。では、$\displaystyle \lim_{ n \to \infty } \frac{1}{n+1} \sum_{k=n+2}^{4n+1} f(\frac{k}{n})$ は?
この動画を見る 
PAGE TOP