【高校数学】 数Ⅰ-50 2次関数の決定② - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-50  2次関数の決定②

問題文全文(内容文):
◎2次関数のグラフが次の3点を通るとき、その2次関数を求めよう。

①(-1.-2)(3.18)(-2.3)
②(3.0)(1.4)(-1.0)
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎2次関数のグラフが次の3点を通るとき、その2次関数を求めよう。

①(-1.-2)(3.18)(-2.3)
②(3.0)(1.4)(-1.0)
投稿日:2014.08.21

<関連動画>

【高校数学】2次関数の最大最小~考え方を身に付けよう~ 2-4【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$y=x^2-2x+2$の最大値と最小値を求めよ
この動画を見る 

神戸大 3次方程式の基本問題

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#複素数平面#一次不等式(不等式・絶対値のある方程式・不等式)#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は整数である。
$x^3+ax^2+bx+c=0$は$\alpha=\dfrac{3+\sqrt{7}i}{2}$と0以上1以下の解をもつ(a,b,c)をすべて求めよ.

神戸大過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第3問〜点の存在する条件と領域の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Oを原点とする座標平面上で考える。座標平面上の2点$S(x_1,y_1),T(x_2,y_2)$
に対し、点Sが点Tから十分離れているとは、
$|x_1-x_2| \geqq 1$ または $|y_1-y_2| \geqq 1$
が成り立つことと定義する。
不等式
$0 \leqq x \leqq 3, 0 \leqq y \leqq 3$
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。
さらに、次の条件$(\textrm{i}),(\textrm{ii})$を共に満たす点Pをとる。
$(\textrm{i})$点Pは領域Dの点であり、かつ、放物線$y=x^2$上にある。
$(\textrm{ii})$点Pは、3点O,A,Bのいずれからも十分離れている。
点Pのx座標をaとする。
(1)aのとりうる値の範囲を求めよ。
(2)次の条件$(\textrm{iii}),(\textrm{iv})$をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。
$(\textrm{iii})$点Qは領域Dの点である。
$(\textrm{iv})$点Qは、4点O,A,B,Pのいずれからも十分離れている。
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。

2022東京大学理系過去問
この動画を見る 

中学生も解ける!?高校範囲の因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^3-y^3$を因数分解
この動画を見る 

データの分析 不明なデータがある場合の問題【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のデータは、あるパズルに挑戦した10人について、完成するまでにかかった時間x(分)をまとめたものである。ただし、xのデータの平均値を$x̄$で表し、20分を超えた人はいなかったもののとする。次の問いに答えよ。

番号 1 2 3 4 5 6 7 8 9 10
x   13 a 7 3 11 18 7 b 16 3
(x-x̄)² 4 c 16 64 0 d 16 1 25 64

(1) $x̄$の値を求めよ。
(2) aをbの式で表せ。
(3) a、b、c、dの値を求めよ。
(4) xの分散と標準偏差を求めよ。ただし小数第1位を四捨五入せよ。
この動画を見る 
PAGE TOP