見掛け倒しの対数方程式 - 質問解決D.B.(データベース)

見掛け倒しの対数方程式

問題文全文(内容文):
これを解け.
$\log_{\log_6(x-3)}81=4$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\log_{\log_6(x-3)}81=4$
投稿日:2021.10.16

<関連動画>

整数の基本問題

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
100!を9進法で表すと末尾に0は何個並ぶか
この動画を見る 

互いに素の定義は?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数a,bが互いに素なら,$a-b$と$b$も互いに素であることを示せ.$(a \gt b)$


この動画を見る 

福田のおもしろ数学011〜あけましておめでとうございます〜2024の階乗は末尾に0が何個並ぶか

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
2024 !の末尾に並ぶ 0 の個数を求めよ。
この動画を見る 

【数A】整数の性質:合同式① 整数a,b,cがa²+b²=c²を満たすとき、a,b,cのうち少なくとも1つは5の倍数である。このことを合同式を利用して証明せよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)整数a,b,cが$a^2+b^2=c^5$を満たすとき、a,b,cのうち少なくとも1つは5の倍数である。このことを合同式を利用して証明せよ。
(2)nが自然数のとき、$n^3+1$が3で割り切れるものをすべて求めよ。
この動画を見る 

近畿大(医)やっぱり出た2023年問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a,n$は整数$(n \geqq2)a$から始まる連続n個の整数の和が2023となる$(a,n)$の組は,
(1)全部で何通りか?
(2)a,nともに奇数は何通りか?

近畿大(医)過去問
この動画を見る 
PAGE TOP