福田の一夜漬け数学〜図形と方程式〜円の方程式(12)共通接線、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜円の方程式(12)共通接線、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$(x-4)^2+y^2=1$ $\cdots$②
の共通接線を全て求めよ。
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$(x-4)^2+y^2=1$ $\cdots$②
の共通接線を全て求めよ。
投稿日:2018.08.09

<関連動画>

福田の数学〜杏林大学2022年医学部第3問〜空間図形と球面の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)座標平面上の3点A(-1,0),B(1,0),Cを頂点とする三角形について考える。
点Cのy座標は正であり、原点をOとして、以下の問いに答えよ。
$(\textrm{a})\angle BAC \lt \angle ABC$を満たす場合、点Cは第$\boxed{ア}$象限に存在する。
$(\textrm{b})\angle ABC \lt \angle ACB$を満たす場合、点Cは$\boxed{イ}$の$\boxed{ウ}$に存在する。
$(\textrm{c})\angle ACB \lt \frac{\pi}{2}$を満たす場合、点Cは$\boxed{エ}$の$\boxed{オ}$に存在する。
$(\textrm{d})\angle BAC \leqq \angle ABC \leqq ACB \leqq \frac{\pi}{2}$を満たす点Cが存在する領域(境界を含む)
の面積は$\frac{\boxed{カ}}{\boxed{キク }}\pi-\frac{\sqrt{\boxed{ケ }}}{\boxed{コ }}$である。
$\boxed{イ},\boxed{エ}$の解答群
①点Aを中心とし点Bを通る円
②点Bを中心とし点Aを通る円
③線分ABを直径とする円
④離心率が0.5で2点O,Aを焦点とする楕円
⑤離心率が0.5で2点O,Bを焦点とする楕円
⑥離心率が0.5で2点A,Bを焦点とする楕円
⑦線分ABを一辺にもち、重心のy座標が正である正三角形
⑧線分ABを一辺にもち、重心のy座標が正である正方形

$\boxed{ウ},\boxed{オ}$の解答群
①内部 ②周上 ③外部 ④重心

(2)座標空間内の4点$A(-1,0,0),B(1,0,0),C(s,t,0),D$を原点とし、
$\angle BAC \lt \angle ABC \lt \angle ACB$
を満たす四面体を考える。$t \gt 0$であり、点Dのz座標は正であるとする。
$(\textrm{a})\angle ADC=\frac{\pi}{2}$を満たす場合、点Dは$\boxed{サ }$に存在する。
$(\textrm{b})\angle ADC=\angle BDC=\frac{\pi}{2}$を満たす場合、
点Dのx座標はsであり、点Dは$(s,\boxed{シ},0)$を中心とする
半径$\boxed{ス}$の円周上にある。
$(\textrm{c})$以下では$t=\frac{4}{3}$とする。設問(1)の結果から、点Cのx座標sは
$\boxed{セ} \lt s \lt -\boxed{ソ}+\frac{\boxed{タ}\sqrt{\boxed{チ}}}{\boxed{ツ}}$の範囲をとりうる。この範囲でsが変化
するとき、$\angle ADB=\angle ADC =\angle BDC=\frac{\pi}{2}$を満たす四面体ABCDの体積は
$s=\frac{\boxed{テ}}{\boxed{エ}}$のとき最大値$\frac{\boxed{ナ}}{\boxed{二ヌ }}$をとる。

2022杏林大学医学部過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(9)外から引いた接線(中心が原点以外の場合)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#点と直線#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$(x+2)^2+(y-2)^2=10$ の接線で、点(2,4)を通るものを求めよ。
また、接点の座標を求めよ。
この動画を見る 

【数Ⅱ】円の接線【流れを覚えて自分で導出する】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ x^2+y^2=25上の点(3,4)における接線lの方程式を求めよ.$
この動画を見る 

福田のわかった数学〜高校2年生030〜円と放物線の位置関係(2)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と放物線の位置関係(2)\\
\\
\left\{\begin{array}{1}
円\ x^2+(y-r)^2=r^2 (r \gt 0)\\
放物線\ y=x^2
\end{array}\right.\\
\\
の共有点が原点のみとなるrの範囲
\end{eqnarray}
この動画を見る 

【数Ⅱ】図形と方程式:x²+y²+4x-6y+13=0はどのような図形を表しているでしょう?

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2+y^2+4x-6y+13=0$はどのような図形を表しているか?
この動画を見る 
PAGE TOP