問題文全文(内容文):
$f(x):x \gt 0$で定まる連続関数
$f(2)=1$
任意の$a \gt 0,\ b \gt 0$に対して
$\displaystyle \int_{a_2}^{a^2b}f(t)dt-\displaystyle \int_{a}^{a^2}f(t)dt$の値は$a$によらない。
$f(x)$を求めよ。
出典:2021年早稲田大学 入試問題
$f(x):x \gt 0$で定まる連続関数
$f(2)=1$
任意の$a \gt 0,\ b \gt 0$に対して
$\displaystyle \int_{a_2}^{a^2b}f(t)dt-\displaystyle \int_{a}^{a^2}f(t)dt$の値は$a$によらない。
$f(x)$を求めよ。
出典:2021年早稲田大学 入試問題
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$f(x):x \gt 0$で定まる連続関数
$f(2)=1$
任意の$a \gt 0,\ b \gt 0$に対して
$\displaystyle \int_{a_2}^{a^2b}f(t)dt-\displaystyle \int_{a}^{a^2}f(t)dt$の値は$a$によらない。
$f(x)$を求めよ。
出典:2021年早稲田大学 入試問題
$f(x):x \gt 0$で定まる連続関数
$f(2)=1$
任意の$a \gt 0,\ b \gt 0$に対して
$\displaystyle \int_{a_2}^{a^2b}f(t)dt-\displaystyle \int_{a}^{a^2}f(t)dt$の値は$a$によらない。
$f(x)$を求めよ。
出典:2021年早稲田大学 入試問題
投稿日:2021.09.02