福田の数学〜一橋大学2024年文系第5問〜円の中心を含む三角形になる確率 - 質問解決D.B.(データベース)

福田の数学〜一橋大学2024年文系第5問〜円の中心を含む三角形になる確率

問題文全文(内容文):
$\Large\boxed{5}$ $n$を3以上の奇数とする。円に内接する正$n$角形の頂点から無作為に相異なる3点を選んだ時、その3点を頂点とする三角形の内部に円の中心が含まれる確率$p_n$を求めよ。
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $n$を3以上の奇数とする。円に内接する正$n$角形の頂点から無作為に相異なる3点を選んだ時、その3点を頂点とする三角形の内部に円の中心が含まれる確率$p_n$を求めよ。
投稿日:2024.04.29

<関連動画>

滋賀大・愛知医大 n個のサイコロ 確率 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#愛知医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
n個のサイコロを投げる$(n \geqq 2)$次の確率を求めよ。
滋賀大学過去問題
(1)出る目の最小値が2
(2)出る目の最小値が2、最大値が5
愛知医科大学過去問題
(3)出る目の積が10の倍数
この動画を見る 

【高校数学】集合の基礎例題2題~苦手な人は一緒に解こう~ 1-3.5【数学A】

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1から12までの自然数全体の集合を全体集合とし、2の倍数全体の集合をA、
3の倍数全体の集合をBとする。

このとき、次の集合を求めよ。
U={1,2,3,4,5,6,7,8,9,10,11,12}, A={2,4,6,8,10,12}, B={3,6,9,12}

(1)$A \cap B$={6,12}

(2)$A \cup B$={2,3,4,6,8,9,10,12}

(3)$\overline{ A }$={1,3,5,7,9,11}

(4)$\overline{ B }$={1,2,4,5,7,8,10,11}

(5)$\overline{ A }$$\cap$$\overline{ B }$={1,5,7,11}

(6)$\overline{ A }$$\cap B$={3,9}

(7)$A \cup$$\overline{ B }$={1,2,4,5,6,7,8,10,11,12}

(8)$\overline{ A \cup B }$={1,5,7,11}

-----------------

全体集合$ U $={1,2,3,4,5,6,7,8,9}の部分集合$ A,B $について、
$\overline{ A } \cap \overline{ B }$={1,4,8}, $\overline{ A } \cap B $={6,9}, $ A \cap \overline{ B } $={2,5,7}のとき、次の集合を求めよ。

(1)$A \cup B$={2,3,5,6,7,9}

(2)$A$={2,3,5,7}

(3)$B$={3,6,9}
この動画を見る 

中学生の解き方 高校生の解き方

アイキャッチ画像
単元: #算数(中学受験)#数A#場合の数と確率#場合の数#場合の数#場合の数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
区別のつかない5個のボールがある。これらすべてをA,B,Cの3人に配るとき何通りあるか?
(ただし1個ももらえない人はいない)

西南学院高等学校
この動画を見る 

京都大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1~5$の数を等確率で入れて$n$桁の整数を作る
$X$が3で割り切れる確率を求めよ

出典:2017年京都大学 過去問
この動画を見る 

福田の数学〜早稲田大学2021年商学部第1問(4)〜空間内の点の移動の場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(4)座標空間において、各座標が整数である6個の点$\rm P_0,P_1,P_2,P_3,P_4,P_5$を、次の条件を満たすように重複を許して選ぶ。
$(\textrm{i}) \rm P_0=(0,0,0)$
$(\textrm{ii})$ ${\rm P}_k$と${\rm P}_{k+1}$との距離は$1$$ (k=0,1,2,3,4,5)$
$(\textrm{iii})$ ${\rm P}_0$と${\rm P}_5$との距離は$1$
このとき、選び方の総数は$\boxed{\ \ エ\ \ }$通りである。

2021早稲田大学商学部過去問
この動画を見る 
PAGE TOP