10大阪府教員採用試験(数学:1番 数列の極限値) - 質問解決D.B.(データベース)

10大阪府教員採用試験(数学:1番 数列の極限値)

問題文全文(内容文):
1⃣$-\frac{3}{2} < a_1 < 3$ , $a_{n+1}=\sqrt{2a_n+3}$
(1)$a_1 < a_2$
(2)$2 \leqq n, 0 < a_n < 3$
(3)$1 \leqq n, 0 < 3-a_n \leqq (\frac{2}{3})^{n-1}(3-a_1)$
(4)$\displaystyle \lim_{ n \to \infty } a_n$
単元: #数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#その他#数学(高校生)#数B#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣$-\frac{3}{2} < a_1 < 3$ , $a_{n+1}=\sqrt{2a_n+3}$
(1)$a_1 < a_2$
(2)$2 \leqq n, 0 < a_n < 3$
(3)$1 \leqq n, 0 < 3-a_n \leqq (\frac{2}{3})^{n-1}(3-a_1)$
(4)$\displaystyle \lim_{ n \to \infty } a_n$
投稿日:2020.11.01

<関連動画>

福田の数学〜早稲田大学2023年理工学部第2問〜玉を取り出す確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 赤玉と黒玉が入っている袋の中から無作為に玉を1つ取り出し、取り出した玉を袋に戻した上で、取り出した玉と同じ色の玉をもう1つ袋に入れる操作を繰り返す。以下の問いに答えよ。
(1)初めに袋の中に赤玉が1個、黒玉が1個入っているとする。n回の操作を行ったとき、赤玉をちょうどk回取り出す確率を$P_n(k)$(k=0,1,...,n)とする。
$P_1(k)$と$P_2(k)$を求め、さらに$P_n(k)$を求めよ。
(2)初めに袋の中に赤玉がr個、黒玉がb個(r≧1, b≧1)入っているとする。n回の操作を行ったとき、k回目に赤玉が、それ以外ではすべて黒玉が取り出される確率$Q_n(k)$(k=1,2,..., n)とする。$Q_n(k)$はkによらないことを示せ。

2023早稲田大学理工学部過去問
この動画を見る 

ヨビノリたくみ 東大入試問題解説

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{n}=\displaystyle \frac{{}_{ 2n+1 } C_n}{n!}$n自然数

(1)
$n \geqq 2,\displaystyle \frac{a_{n}}{a_{n-1}}$を既約分数$\displaystyle \frac{q_{n}}{p_{n}}$と表す。$(p_{n} \geqq 1)$
$p_{n},q_{n}$を求めよ

(2)
$a_{n}$が整数となる$n(n \geqq 1)$を全て求めよ

出典:2018年東京大学 入試問題
この動画を見る 

福田の数学〜立教大学2023年経済学部第2問〜利息計算と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 1年目の初めに新規に100万円を預金し、2年目以降の毎年初めに12万円を追加で預金する。ただし、毎年の終わりに、その時点での預金額の8%が利子として預金に加算される。自然数$n$に対して、$n$年目の終わりに利子が加算された後の預金額を$S_n$万円とする。このとき、以下の問いに答えよ。
ただし、$\log_{10}2$=0.3010, $\log_{10}3$=0.4771とする。
(1)$S_1$, $S_2$をそれぞれ求めよ。
(2)$S_{n+1}$を$S_n$を用いて表せ。
(3)$S_n$を$n$を用いて表せ。
(4)$\log_{10}1.08$を求めよ。
(5)$S_n$>513 を満たす最小の自然数$n$を求めよ。
この動画を見る 

北海道教育大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#北海道教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'91北海道教育大学過去問題
$a_1=b_1=1$ n自然数
$a_{n+1}=a_n+b_n$
$b_{n+1}=4a_n+b_n$
(1){ $a_n+kb_n$ }が等比数列となるようなkを求めよ。
(2)$a_n,b_n$の一般項
この動画を見る 

芝浦工大 1の(4n+1)乗根

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$z^{4n+1}=1$の解を$1,\alpha,\alpha_2,\alpha_3・・・\alpha_{4n}$とする.

(1)$\alpha_1\alpha_2\alpha_3・・・・・・\alpha_{4n}=\Box$
(2)$(\alpha_1-i)(\alpha_2-i)(\alpha_3-i)・・・・・・(\alpha_{4n}-i)=\Box$

2001芝浦工大過去問
この動画を見る 
PAGE TOP