「整数の性質」がスラスラわかる頭の使い方教えます【共通テスト数学IA】 - 質問解決D.B.(データベース)

「整数の性質」がスラスラわかる頭の使い方教えます【共通テスト数学IA】

問題文全文(内容文):
【共通テスト数学IA】整数の性質の解説動画です

天秤ばかりの皿$A$に物体$X$をのせ、皿$B$に3gの分銅3個を乗せたところ、天秤ばかりは$B$の側に傾いた。
さらに、皿$A$に8gの分銅1個をのせたところ、天秤ばかりは$A$の側に傾き、皿$B$に3gの分銅2個をのせると天秤ばかりは釣り合った。
このとき、皿$A,B$にのせているものの質量を比較すると
$M+8 \times $[ア]$= 3 \times$[イ] が成り立ち、$M=$[ウ]である。上の式は
$3 \times $[イ]$+8(-$[ア]$)=M$ と変形することができ、$x=$[イ]$, y=-$[ア]は、方程式$3x+8y=M$の整数解の一つである。
単元: #数A#整数の性質#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト数学IA】整数の性質の解説動画です

天秤ばかりの皿$A$に物体$X$をのせ、皿$B$に3gの分銅3個を乗せたところ、天秤ばかりは$B$の側に傾いた。
さらに、皿$A$に8gの分銅1個をのせたところ、天秤ばかりは$A$の側に傾き、皿$B$に3gの分銅2個をのせると天秤ばかりは釣り合った。
このとき、皿$A,B$にのせているものの質量を比較すると
$M+8 \times $[ア]$= 3 \times$[イ] が成り立ち、$M=$[ウ]である。上の式は
$3 \times $[イ]$+8(-$[ア]$)=M$ と変形することができ、$x=$[イ]$, y=-$[ア]は、方程式$3x+8y=M$の整数解の一つである。
投稿日:2023.12.28

<関連動画>

福田の数学〜名古屋大学2024年文系第3問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $n$を自然数とする。表と裏が出る確率がそれぞれ$\displaystyle\frac{1}{2}$のコインを$n$回投げ、以下のように得点を決める。
・最初に数直線上の原点に石を置き、コインを投げて表なら2、裏なら3だけ数直線上を正方向に石を移動させる。コインを$k$回投げた後の石の位置を$a_k$とする。
・$a_n$≠2$n$+2 の場合は得点を0、$a_n$≠2$n$+2 の場合は得点を$a_1$+$a_2$+...+$a_n$とする。
たとえば、$n$=3のとき、投げたコインが3回とも表のときは得点は0、投げたコインが順に裏、裏、表のときは得点は3+6+8=17 である。
(1)$n$解のうち裏の出る回数を$r$とするとき、$a_n$を求めよ。
(2)$n$=4とする。得点が0でない確率および25である確率をそれぞれ求めよ。
(3)$n$=9とする。得点が100である確率および奇数である確率をそれぞれ求めよ。
この動画を見る 

整数問題の難問!2つの解法を紹介【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2=yz+7 \\
y^2=zx+7 \\
z^2=xy+7
\end{array}
\right.
\end{eqnarray}$

整数$(x,y,z)$を求めよ.

一橋大過去問
この動画を見る 

【高校数学】合同式の基本事項~modの使い方・考え方~ 5-6【数学A】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
合同式の基本事項 modの使い方・考え方についての説明動画です
この動画を見る 

順列ができるようになる考え方【高校数学】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
【高校数学】順列ができるようになる考え方説明動画です
この動画を見る 

【理数個別の過去問解説】1999年度大阪大学 数学 理系前期第5問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
一片の長さが4の正方形の紙の表を、図のように一片の長さが1のマス目に16個に区切る。その紙を2枚用意し、AとBの2人に渡す。AとBはそれぞれ渡された紙の2個のマス目を無作為に選んで塗りつぶす。塗りつぶした後、両方の紙を表を上にしてどのように重ね合わせても、塗りつぶされたマス目がどれも重ならない確率を求めよう。ただし、2枚の紙を重ね合わせるときは、それぞれの紙を回転させてもよいが、紙の四隅は合わせることとする。
この動画を見る 
PAGE TOP