よく出る問題!放物線と直線が接するということは?【数学 入試問題】【京都大学】 - 質問解決D.B.(データベース)

よく出る問題!放物線と直線が接するということは?【数学 入試問題】【京都大学】

問題文全文(内容文):
放物線$y=ax^2+bx+c$が3直線$y=x,y=2x-1,y=3x-3$のすべてと接するとき、$a,b,c$の値を求めよ。

京都大過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
放物線$y=ax^2+bx+c$が3直線$y=x,y=2x-1,y=3x-3$のすべてと接するとき、$a,b,c$の値を求めよ。

京都大過去問
投稿日:2022.06.17

<関連動画>

【受験対策】数学-関数12

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の図1は, $y = 2x,y = 3x,y =-2x,y =-3x$の
グラフをそれぞれ表している.
このとき,$y =-2x$のグラフを
ア~エから1つ選び,その記号を書きなさい.

右の図2で,直線$\ell$は関数$y =\dfrac{1}{2}x - 3$ のグラフ,
直線$m$は$y = \dfrac{1}{2}x + 5$ のグラフで,
2点,$A,B$は直線$\ell$上の点,2点$C,D$は直線$m$上の点で,
四角形$ABDC$は平行四辺形である.
点$A$の$x$座標が$-2$,点$B$の$y$座標が$-1$のとき,
次の②,③に答えなさい.

②点$C$の$x$座標が$3$のとき,点$D$の座標を求めなさい.

③ 四角形$ABDC$の面積を求めなさい.

図は動画内参照
この動画を見る 

【高校数学】  数Ⅰ-81  三角比⑥

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0° \leqq \theta \leqq 180°$のとき、次の等式を満たす$\theta$を求めよう。

①$\cos \theta=\displaystyle \frac{1}{\sqrt{ 2 }}$

②$\sin \theta=\sqrt{ 3 }$

③$\sqrt{ 3 } \tan \theta+1=0$

④$0° \leqq \theta \leqq 180°$とする。
$\sin \theta=\displaystyle \frac{4}{5}$のとき、$\cos \theta,\tan \theta$の値を求めよう。
この動画を見る 

17愛知県教員採用試験(数学:1-1番 整数問題)

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣(1)
$\sqrt{n^2+16}$が自然数となるような自然数nを求めよ。
この動画を見る 

華麗に解こう

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$a+b+c=4$
$a^2+b^2+c^2=10$
$a^3+b^3+c^3=22$
$a^4+b^4+c^4=?$
この動画を見る 

【高校数学】因数分解のまとめ~どこよりも丁寧に~【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
(1)\,bc(b-c)+ca(c-a)+ab(a-b)
$
$\displaystyle
(2)\,ab(a+b)+bc(b+c)+ca(c+a)+2abc
$
$\displaystyle
(3)\,(a+b)(b-c)(a-c)-abc
$
$\displaystyle
(4)\,a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)
$
$\displaystyle
(5)\,a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc
$
$\displaystyle
(6)\,2a^2b-3ab+a-2b-2
$
この動画を見る 
PAGE TOP