同志社大・早稲田(商) 式の計算 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

同志社大・早稲田(商) 式の計算 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
同志社大学過去問題
$x+y+z=3 , \quad \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}$のとき
(1)$(x-3)(y-3)(z-3)$の値
(2)$x^3+y^3+z^3$の値

早稲田大学過去問題
$x^3+\frac{1}{x^3}=52$を満たす$x^4+\frac{1}{x^4}$の値
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
同志社大学過去問題
$x+y+z=3 , \quad \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}$のとき
(1)$(x-3)(y-3)(z-3)$の値
(2)$x^3+y^3+z^3$の値

早稲田大学過去問題
$x^3+\frac{1}{x^3}=52$を満たす$x^4+\frac{1}{x^4}$の値
投稿日:2018.06.04

<関連動画>

福田の数学〜青山学院大学2022年理工学部第2問〜平面ベクトルの直交と絶対値の最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
四面体OABCは
$OA=OB=2,\ \ \ OC=3,\ \ \ AB=1,\ \ \ BC=4$
を満たすとする。また、三角形ABCの重心をGとするとき、$OG=\sqrt2$である。
(1)$\overrightarrow{ OA }・\overrightarrow{ OB }=\frac{\boxed{ア}}{\boxed{イ}},$
$\ \ \ \overrightarrow{ OA }・\overrightarrow{ OC}=\frac{\boxed{ウエ}}{\boxed{オ}}$
(2)$\ \overrightarrow{ OG }$と$\overrightarrow{ OA }+k\overrightarrow{ OB }$が垂直であるのは$k=\boxed{カキ}$のときである。
(3)$t$を実数とする。
$|t\overrightarrow{ OA }-2t\overrightarrow{ OB }+\overrightarrow{ OC }|$
の最小値は$\frac{\sqrt{\boxed{クケコ}}}{\boxed{サ}}$であり、
そのときのtの値は$\frac{\boxed{シス}}{\boxed{セ}}$である。

2022青山学院大学理工学部過去問
この動画を見る 

あれのオンパレード!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{\dfrac{99^4+101^4+200^4}{2}}$
これを解け.
この動画を見る 

"2025"を含む予想問題(3):入試予想問題~全国入試問題解法

単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$(5-2\sqrt{6})^{2025}×(5+2\sqrt{6})^{2026}×(4-\sqrt{6})$
$を計算せよ。$
この動画を見る 

【わかりやすく解説】複2次式の因数分解(和と差の積)数学Ⅰ

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$x^4-9x^2+16$を因数分解せよ
この動画を見る 

14奈良県教員採用試験(数学:高1-8番 複素数)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣-(8)
$x^3-1=0$の虚数解の1つをω
$ω^{10}+ω^{20}$
この動画を見る 
PAGE TOP