福田の数学〜立教大学2025経済学部第1問(6)〜2つのベクトルの両方に垂直なベクトル - 質問解決D.B.(データベース)

福田の数学〜立教大学2025経済学部第1問(6)〜2つのベクトルの両方に垂直なベクトル

問題文全文(内容文):

$\boxed{1}$

(6)空間のベクトル$\vec{ p}=(x,y,z)$は

$\vec{b}=(0,3,2)$の両方に垂直であり、

$\vec{\vert p \vert}=7$かつ$z \gt 0$を

満たしている。

このとき、$\vec{p}=(\boxed{ク},\boxed{ケ},\boxed{コ})$である。

$2025$年立教大学経済学部過去問題
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(6)空間のベクトル$\vec{ p}=(x,y,z)$は

$\vec{b}=(0,3,2)$の両方に垂直であり、

$\vec{\vert p \vert}=7$かつ$z \gt 0$を

満たしている。

このとき、$\vec{p}=(\boxed{ク},\boxed{ケ},\boxed{コ})$である。

$2025$年立教大学経済学部過去問題
投稿日:2025.05.31

<関連動画>

18奈良県教員採用試験(数学:1番 ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣一直線上にないO、A、B
$\overrightarrow{ OD } = 3\overrightarrow{ OA }$ , $\overrightarrow{ OE } = 2\overrightarrow{ OB }$
BDとAEの交点をC
(1)$\overrightarrow{ OC } $を$\overrightarrow{ OA } $と$\overrightarrow{ OB } $で表せ
(2)OCとABの交点をF
AF:FBを求めよ。
(3)$|\overrightarrow{ OA } |=4 $ , $|\overrightarrow{ OB }|= 5$ , $|\overrightarrow{ OC }|= 6$のときDEの長さを求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第2問〜空間ベクトルと平面の方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$点Oを原点とするxyz座標空間に、2点A(2,3,1),\ B(-2,1,3)をとる。
また、x座標が正の点Cを、$\overrightarrow{ OC }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$に垂直で、
$|\overrightarrow{ OC }|=8\sqrt3$となるように定める。
(1)$\triangle OAB$の面積は$\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }}$である。
(2)点Cの座標は$(\boxed{\ \ ウ\ \ },\ \boxed{\ \ エオ\ \ },\ \boxed{\ \ カ\ \ })$である。
(3)四面体OABCの体積は$\boxed{\ \ キク\ \ }$である。
(4)平面ABCの方程式は$\ x+\boxed{\ \ ケ\ \ }\ y+\boxed{\ \ コ\ \ }\ z-\ \boxed{\ \ サシ\ \ }=0$である。
(5)原点Oから平面ABCに垂線OHを下ろしたとき、点Hの座標は
$(\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セソ\ \ }},\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }},\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }})$
である。

2022慶應義塾大学商学部過去問
この動画を見る 

【数B】ベクトル:直線と平面のなす角

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面と直線のなす角を求めます!
この動画を見る 

【数C】【平面上のベクトル】ベクトル方程式4 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(-6, 2), B(3, -5)とする。線分ABの垂直二等分線の方程式を、ベクトルを利用して求めよ。
この動画を見る 

数学「大学入試良問集」【14−3 垂直と平面ベクトルと正射影】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle OAB$において、辺$OA,$辺$OB$の長さをそれぞれ$a,b$とする。
また、$\angle AOB$は直角ではないとする。
2つのベクトル$\overrightarrow{ OA }$と$\overrightarrow{ OB }$の内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を$k$とおく。
次の問いに答えよ。

(1)
直線$OA$上に点$C$を、$\overrightarrow{ BC }$が$\overrightarrow{ OA }$と垂直になるようにとる。
$\overrightarrow{ OC }$を$a,k,\overrightarrow{ OA }$を用いて表せ。

(2)
$a=\sqrt{ 2 },b=1$とする。
直線$BC$上に点$H$を、$\overrightarrow{ AH }$が$\overrightarrow{ OB }$と垂直になるようにとる。
$\overrightarrow{ OH }=u\overrightarrow{ OA }+v\overrightarrow{ OB }$とおくとき、$u$と$v$をそれぞれ$k$で表せ。
この動画を見る 
PAGE TOP