中山廉人の数学力を鈴木貫太郎がチェック - 質問解決D.B.(データベース)

中山廉人の数学力を鈴木貫太郎がチェック

問題文全文(内容文):
鈴木貫太郎先生が、「指数対数」と「対数関数」の基本を解説します。

公式や定義を確認しましょう。
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
鈴木貫太郎先生が、「指数対数」と「対数関数」の基本を解説します。

公式や定義を確認しましょう。
投稿日:2022.04.16

<関連動画>

e^πとπ^e どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#微分法と積分法#指数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$e^π$と$π^e$どっちがでかい?
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第4問〜指数関数と直線の位置関係と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=e^x$を考える。
(1)$a,b$を実数とし、$a \geqq 0$とする。曲線Cと直線$y=ax+b$が共有点をもつため
のaとbの条件を求めよ。
(2)正の実数tに対し、C上の点$A(t,e^t)$を中心とし、直線$y=x$に接する円Dを
考える。直線$y=x$と円Dの接点Bのx座標は$\boxed{\ \ タ\ \ }$であり、
円Dの半径は$\boxed{\ \ チ\ \ }$である。線分ABを3:2に内分する点をPとし、Pのx座標、y座標
をそれぞれX(t),Y(t)とする。このとき、等式
$\lim_{t \to \infty}\frac{Y(t)-kX(t)}{\sqrt{\left\{X(t)\right\}^2+\left\{Y(t)\right\}^2}}=0$
が成り立つような実数kを定めると$k=\boxed{\ \ ツ\ \ }$である。
ただし、$\lim_{t \to \infty}te^{-t}=0$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

【数Ⅱ】指数関数・対数関数:指数計算 初歩の確認

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
指数の基本の解説です
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第2問〜3次関数が区間で常に正である条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$s$を実数、tを0以上の実数とし、関数f(x)を
$f(x)=x^3-sx^2+(t-2s^2)\ x+st$
により定める。関数$f(x)$に対して次の条件pを考える。
$p:0 \leqq x \leqq 1$を満たすすべてのxに対して$f(x) \gt 0$である。
このとき、条件pを満たす点(s,t)の領域を図示せよ。

2022浜松医科大学医学部過去問
この動画を見る 

福田の数学〜北海道大学2025理系第1問〜指数対数の基本性質と数列

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$\alpha,r$を$\alpha \gt 1,r \gt 1$を満たす実数とする。

数列$\{a_n\}$を$a_1=\alpha$で公比が$r$の等比数列とする。

数列$\{b_n\}$を

$b_n=\log_{a_{n}} (a_{n+1}) (n=1,2,3,\cdots)$で定める。

(1)$b_n$を$n$と$\log_{\alpha}r$を用いて表せ。

$2025$年北海道大学理系過去問題
この動画を見る 
PAGE TOP