【数Ⅰ】【2次関数】2次関数の文章題2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【2次関数】2次関数の文章題2 ※問題文は概要欄

問題文全文(内容文):
点$P(t,t^2)$は放物線$y=x^2$上の点で、2点$A(-1,1)、B(4,16)$の間にある。このとき、三角形$APB$の面積の最大値を求めよ。
チャプター:

0:00 導入
0:38 グラフを描いてみる
1:08 方針
1:51 点と直線の距離
2:46 直線ABの式を出す
4:07 点と点の距離
4:37 面積計算
5:55 解答

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
点$P(t,t^2)$は放物線$y=x^2$上の点で、2点$A(-1,1)、B(4,16)$の間にある。このとき、三角形$APB$の面積の最大値を求めよ。
投稿日:2024.12.03

<関連動画>

福田のわかった数学〜高校1年生037〜部屋割り論法(2)

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 部屋割り論法(2)\\
座標平面上で異なる5個の格子点の\\
どれか2個を結ぶと、その中点が格子点になることを証明せよ。
\end{eqnarray}
この動画を見る 

東京医科歯科大 整式の大小比較

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は異なる整数
大小比較せよ

(1)
$a^3+b^3,a^2b+ab^2$

(2)
$(a+b+c)(a^2+b^2+c^2)$
$(a+b+c)(ab+bc+ca)$
$3(a^3+b^3+c^3),9abc$


出典:2010年東京医科歯科大学 過去問
この動画を見る 

2つの二次方程式 2025立教新座

アイキャッチ画像
単元: #2次関数#2次方程式と2次不等式
指導講師: 数学を数楽に
問題文全文(内容文):
2つの2次方程式 \begin{eqnarray}
x^2 -kx-10 = 0
\end{eqnarray}
\begin{eqnarray}
x^2+5x+2k=0
\end{eqnarray}
が共通解を1つだけ持つ。この共通解と定数kを求めよ。ただしk≠-5
この動画を見る 

「三角比の値と相互関係」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1.$\sin\theta,\cos\theta,\tan\theta$のうち、1つが次のように与えられたとき、他の2つの値を求めよ。
  (1)$\sin\theta=\displaystyle \frac{1}{3}(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $\sin^2\theta+\cos^2\theta=1$より
    $\left[ \dfrac{ 1 }{ 3 } \right]+\cos^2\theta=1$
    $\cos^2\theta=\displaystyle \frac{8}{9}$ $\Rightarrow\cos\theta=\pm \displaystyle \frac{2\sqrt{ 2 }}{3}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{\cos\theta}$より
    $\tan\theta=\displaystyle \frac{1}{3}\div\left[ \pm \dfrac{ 2\sqrt{ 2 } }{ 3 } \right]$
    $=\pm \displaystyle \frac{1}{2\sqrt{ 2 }}=\pm \displaystyle \frac{\sqrt{ 2 }}{4}$



  (2)$\tan\theta=-3(0^{ \circ } \leqq \theta \leqq 180^{ \circ })$
    $1+\tan^2\theta=\displaystyle \frac{1}{\cos^2\theta}$より
    $2+(-3)^2=\displaystyle \frac{1}{\cos^2\theta}$
    $\cos^2\theta=\displaystyle \frac{1}{10}$
    ここで、$\tan\theta \lt 0$より$\cos\theta \lt 0$であるから
    $\cos\theta=-\displaystyle \frac{1}{\sqrt{ 10 }}$
    $\tan\theta=\displaystyle \frac{\sin\theta}{ \cos\theta }$より$\sin\theta=\tan\theta\cos\theta$
    $\tan\theta=-3\left[ -\dfrac{ 1 }{ \sqrt{ 10 } } \right]=\displaystyle \frac{3}{ \sqrt{ 10 } }$
この動画を見る 

2023高校入試解説40問目 球の切り口 早稲田実業(改)

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
3点P,Q,Rを通る平面で球Oを切ったとき、切り口の円の半径=?
*3点P,Q,Rは、AHを直径とする球面上
*図は動画内参照

2023早稲田実業学校
この動画を見る 
PAGE TOP