頭の体操に 四天王寺 - 質問解決D.B.(データベース)

頭の体操に 四天王寺

問題文全文(内容文):
$S-T=3\,\rm{cm}^2$
$AP=?$
*図は動画内参照

四天王寺高等学校
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
$S-T=3\,\rm{cm}^2$
$AP=?$
*図は動画内参照

四天王寺高等学校
投稿日:2024.04.24

<関連動画>

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#相似な図形#数列#漸化式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数からなる数列${z_n}$を、次の条件で定める。
$z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)$
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。
(1)$z_2=\boxed{ツ }+\boxed{ツ }\ i, \ \ \ z_3=\boxed{ト}+$
$\boxed{ナ}\ i,\ \ \ z_4=\boxed{二}+\boxed{ヌ}\ i $である。
(2)$r \gt 0,\ 0 \leqq θ \lt 2\pi$ を用いて、$1+i=r(\cos θ+i\sin θ)$のように$1+i$を極形式で
表すとき、$r=\sqrt{\boxed{ネ}},\ θ=\frac{\boxed{ノ }}{\boxed{ハ}}\pi$である。
(3)すべての正の整数nに対する$\triangle PA_nA_{n+1}$が互いに相似になる点Pに対応する
複素数は、$\boxed{ヒ}+\boxed{フ }\ i$である。
(4)$|z_n| \gt 1000$となる最小のnは$n=\boxed{へ}$である。
(5)$A_{2022+k}$が実軸上にある最小の正の整数kは$k=\boxed{ホ}$である。

2022上智大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第3問〜複素数平面と図形

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} iを虚数単位とする。複素数zの絶対値を|z|と表す。\\
w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5} とし、\alpha=w+w^4 とする。\\
\\
(1)\alpha^2=\boxed{\ \ お\ \ }\ である。これより、\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}である。\\
(2)複素数平面上の2点\frac{i}{2},\ -1間の距離は\ \boxed{\ \ か\ \ }\ である。\\
(3)複素数平面上の2点w^2,\ -1間の距離は\ \boxed{\ \ き\ \ }\ である。\\
(4)\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta) (ただし、r \gt 0,\ 0 \leqq \theta \lt 2\pi)\\
とおくとき、r=\boxed{\ \ く\ \ }\ であり、\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi\ である。\\
(5)複素数平面上で、-1を中心都市w^2を通る円上をzが動くとする。\\
x=\frac{1}{z}とするとき、xは|1+x|=\boxed{\ \ け\ \ }|x| を満たし、\boxed{\ \ こ\ \ }を\\
中心とする半径\boxed{\ \ さ\ \ }の円を描く。\\
\\
\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }の選択肢\\
(\textrm{a})1  (\textrm{b})2  (\textrm{c})\alpha  (\textrm{d})2\alpha\\
(\textrm{e})\frac{\alpha}{2}+1  (\textrm{f})\frac{\alpha}{2}-1  (\textrm{g})-\frac{\alpha}{2}+1  (\textrm{h})-\frac{\alpha}{2}-1\\
(\textrm{i})\alpha+1  (\textrm{j})\alpha-1  (\textrm{k})-\alpha+1  (\textrm{l})-\alpha-1\\
(\textrm{m})\alpha+\frac{1}{2}  (\textrm{n})\alpha-\frac{1}{2}  (\textrm{o})-\alpha+\frac{1}{2}  (\textrm{p})-\alpha-\frac{1}{2}  
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

正五角形の作図と証明

アイキャッチ画像
単元: #数Ⅰ#複素数平面#図形と計量#三角比への応用(正弦・余弦・面積)#図形への応用#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
正五角形を作図せよ.
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科第2問(2)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数$a,b,c$に対して整式$f(z)=az^2+bz+c$を考える。iを虚数単位とする。$f(0),f(1),f(i)$がいずれも1以上2以下の実数であるとき、$f(2)$のとりうる範囲を複素数平面上に図示せよ。
この動画を見る 

複素数平面の基本⑫半直線のなす角を考える

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面における半直線のなす角を考える
この動画を見る 
PAGE TOP