頭の体操に 四天王寺 - 質問解決D.B.(データベース)

頭の体操に 四天王寺

問題文全文(内容文):
$S-T=3\,\rm{cm}^2$
$AP=?$
*図は動画内参照

四天王寺高等学校
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
$S-T=3\,\rm{cm}^2$
$AP=?$
*図は動画内参照

四天王寺高等学校
投稿日:2024.04.24

<関連動画>

【数C】【複素数平面】複素数と図形9 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面上の異なる2点A,Bを表す複素数をそれぞれ
1+i、4+3iとする。線分ABを1辺とする正方形の
他の2つの頂点を表す複素数をそれぞれ求めよ。
この動画を見る 

【数C】【複素数平面】複素数と図形2 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の方程式を満たす点$z$全体の集合はどのような図形か。
(1) $z+\bar{z}=2$ (2) $z-\bar{z}=2i$
この動画を見る 

福田の数学〜大阪大学2022年理系第1問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
rを正の実数とする。
複素数平面上で点Zが点3/2を中心とする半径rの円周上を動くとき、
$Z+w=Zw$
を満たす点wが描く図形を求めよ。

2022大阪大学理系過去問
この動画を見る 

慈恵医大 複素数の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
(1)$\alpha^7,\displaystyle \sum_{k=0}^6 {\alpha}_{k}$の値を求めよ.

(2)$\beta=\alpha^3+\alpha^5+\alpha^6$とするとき,$\beta+\bar{\beta},\beta\bar{\beta}$の値を求めよ.

(3)$\beta=a+bi,b$の正負を判定し$a,b$の値を求めよ.

慈恵医大過去問
この動画を見る 

福田のおもしろ数学528〜平面幾何の証明

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

平行四辺形$ABCD$と内部の点$O$において

$\alpha+\beta=180°$のとき

$\angle OBC=\angle ODC$

を証明せよ。

図は動画内参照
この動画を見る 
PAGE TOP