頭の体操に 四天王寺 - 質問解決D.B.(データベース)

頭の体操に 四天王寺

問題文全文(内容文):
$S-T=3\,\rm{cm}^2$
$AP=?$
*図は動画内参照

四天王寺高等学校
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
$S-T=3\,\rm{cm}^2$
$AP=?$
*図は動画内参照

四天王寺高等学校
投稿日:2024.04.24

<関連動画>

福田の入試問題解説〜北海道大学2022年理系第5問〜複素数平面上の点の軌跡とドモアブルの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{5}}}\ 複素数zに関する次の2つの方程式を考える。ただし、\bar{ z }はzと共役な複素数とし、\\
iを虚数単位とする。\\
\\
z\bar{ z }=4 \ldots\ldots①     |z|=|z-\sqrt3+i| \ldots\ldots②\\
\\
(1)①、②それぞれの方程式について、その解z全体が表す図形を複素数平面上に\\
図示せよ。\\
\\
(2)①、②の共通解となる複素数を全て求めよ。\\
\\
(3)(2)で求めた全ての複素数の積をwとおく。このときw^nが負の実数となる\\
ための整数nの必要十分条件を求めよ。
\end{eqnarray}

2022北海道大学理系過去問
この動画を見る 

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#相似な図形#数列#漸化式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 複素数からなる数列{z_n}を、次の条件で定める。\hspace{150pt}\\
z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)\\
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。\\
(1)z_2=\boxed{\ \ ツ \ \ }+\boxed{\ \ ツ \ \ }\ i, \ \ \ z_3=\boxed{\ \ ト \ \ }+\boxed{\ \ ナ \ \ }\ i,\ \ \ z_4=\boxed{\ \ 二 \ \ }+\boxed{\ \ ヌ \ \ }\ i \ \ である。\\
(2)r \gt 0,\ 0 \leqq θ \lt 2\pi を用いて、1+i=r(\cos θ+i\sin θ)のように1+iを極形式で\\
表すとき、r=\sqrt{\boxed{\ \ ネ \ \ }},\ θ=\frac{\boxed{\ \ ノ \ \ }}{\boxed{\ \ ハ \ \ }}\piである。\\
(3)すべての正の整数nに対する\triangle PA_nA_{n+1}が互いに相似になる点Pに対応する\\
複素数は、\boxed{\ \ ヒ\ \ }+\boxed{\ \ フ \ \ }\ iである。\\
(4)|z_n| \gt 1000となる最小のnはn=\boxed{\ \ へ \ \ }である。\\
(5)A_{2022+k}が実軸上にある最小の正の整数kはk=\boxed{\ \ ホ \ \ }である。
\end{eqnarray}

2022上智大学理工学部過去問
この動画を見る 

複素数平面!円が1と−1を通るということは・・・【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
複素数αに対してその共役な複素数をα¯で表す。
αを実数でない複素数とする。 複素数平面内の円Cが1, -1,αを通るならば,
Cは、-1/α¯も通ることを示せ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題075〜浜松医科大学2017年度医学部第1問〜複素数の実部と虚部

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)|z| ≦ |z-($\sqrt 3 + i$)|, |z-$\bar{z}$| ≦ 1および|z-$2i$| ≦ 2を同時にみたす複素数zに対応する点の領域を複素数平面上に図示せよ。
(2)(1)で得られた領域内の点に対応する複素数のうち、実部が最大となるものを$\alpha$、実部と虚部の和が最大となるものを$\beta$とするとき、$\alpha$と$\beta$を求めよ。
(3)次の式で定義される$w_n$の実部を$R_n$とするとき、無限級数$\displaystyle\sum_{n=1}^{\infty}R_n$の和を求めよ。
$w_n=\displaystyle\frac{\{1+(2-\sqrt 3)i\}(\sqrt 3+i)^{3(n-1)}}{2^{4(n-1)}}$ $(n=1,2,3,\dots)$

2017浜松医科大学医学部過去問
この動画を見る 

複素数平面の基本⑪図形の方程式を条件から考える

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
教材: #4S数学#4S数学Ⅲ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
点zが原点Oを中心とする半径2の円上を動くとき、w=(z-2)/(z+1)はどのような図形を描くか
この動画を見る 
PAGE TOP