頭の体操に 四天王寺 - 質問解決D.B.(データベース)

頭の体操に 四天王寺

問題文全文(内容文):
$S-T=3\,\rm{cm}^2$
$AP=?$
*図は動画内参照

四天王寺高等学校
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
$S-T=3\,\rm{cm}^2$
$AP=?$
*図は動画内参照

四天王寺高等学校
投稿日:2024.04.24

<関連動画>

【数C】【複素数平面】複素数と図形5 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点$z$が、点$-1$を通り実軸に垂直な直線上を動くとき、
点$w=\dfrac1z$ はどのような図形を描くか。
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜三角形の形状(3)

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 異なる3点$A(\alpha),B(\beta),C(\gamma)$が
$3\alpha^2+\beta^2+\gamma^2-3\alpha\beta$$+\beta\gamma$$-3\alpha\gamma$$=0$
を満たす。$\triangle ABC$はどのような三角形か。
この動画を見る 

数学「大学入試良問集」【16−5 複素数平面と軌跡の図示】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$z$を複素数とし、$i$を虚数単位とする。
(1)$\displaystyle \frac{1}{z+i}+\displaystyle \frac{1}{z-i}$が実数となる点$z$全体の描く図面$P$を複素数平面上にそれぞれ図示せよ。
(2)$z$が上で求められた図形$P$上を動くときに$\omega=\displaystyle \frac{z+i}{z-i}$の描く図形を複素数平面上に図示せよ。
この動画を見る 

福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
中央大学2022年理工学部第4問解説です

tを実数とし、 xの3次式f(x) を
ƒ(x) = x³ + (1 − 2t)x² + (4 − 2t)x +4
により定める。以下の問いに答えよ。
(1) 3 次式f(x) を実数係数の2次式と1次式の積に因数分解し、f(x)=0 が虚数の
解をもつようなtの範囲を求めよ。
実数t が (1) で求めた範囲にあるとき、 方程式 f(x) = 0 の異なる2つの虚数解を
a,βとし、実数解をγとする。ただし、αの虚部は正、βの虚部は負とする。
以下、α, β,γを複素数平面上の点とみなす。
(2) α, β,γをtを用いて表せ。また、実数t が (1) で求めた範囲を動くとき、点α
が描く図形を複素数平面上に図示せよ。
(3) 3点 α, β, γが一直線上にあるようなtの値を求めよ。
(4) 3点 α, β, γが正三角形の頂点となるようなtの値を求めよ。
この動画を見る 

福田の数学〜東工大2022理系1修正版

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とし、$f(z)=z^2+az+b$ とする。a,bが
$|a| \leqq 1,  |b| \leqq 1$
を満たしながら動くとき、$f(z)=0$を満たす複素数zが取りうる値の範囲を
複素平面上に図示せよ。

2022東京工業大学理系過去問
この動画を見る 
PAGE TOP