福田の入試問題解説〜北海道大学2012年理系数学第4問〜2次関数と2次不等式、領域 - 質問解決D.B.(データベース)

福田の入試問題解説〜北海道大学2012年理系数学第4問〜2次関数と2次不等式、領域

問題文全文(内容文):
${\Large\boxed{4}}$ 実数$a,b$に対して、$f(x)=x^2-2ax+b,g(x)$$=x^2-2bx+a$ とおく。
(1)$a \ne b$のとき、$f(c)=g(c)$を満たす実数cを求めよ。
(2)(1)で求めた$c$について、$a,b$が条件$a \lt c \lt b$を満たすとする。このとき
連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を$a,b$を用いて表せ。
(3)一般に$a \lt b$のとき、連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を求め、その条件を満たす
点$(a,b)$の範囲を$ab$平面上に図示せよ。
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ 実数$a,b$に対して、$f(x)=x^2-2ax+b,g(x)$$=x^2-2bx+a$ とおく。
(1)$a \ne b$のとき、$f(c)=g(c)$を満たす実数cを求めよ。
(2)(1)で求めた$c$について、$a,b$が条件$a \lt c \lt b$を満たすとする。このとき
連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を$a,b$を用いて表せ。
(3)一般に$a \lt b$のとき、連立不等式
$f(x) \lt 0$ かつ $g(x) \lt 0$
が解をもつための必要十分条件を求め、その条件を満たす
点$(a,b)$の範囲を$ab$平面上に図示せよ。
投稿日:2018.12.28

<関連動画>

平方根:代表的な無理数の暗記法~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平方根:代表的な無理数の暗記法~全国入試問題解法

$\sqrt{ 2 } = 1.41421356$ 一夜一夜に人見ごろ

$\sqrt{ 3 } = 1.7320508$ ...人なみにおごれや

$\sqrt{ 5 } = 2.2360679$ 富士山ろくオウム鳴く

$\sqrt{ 6 } = 2 2.4494897$... 二夜シクシク

$\sqrt{ 7 } = 2 2.6457513$... 変に虫いないさ

$\sqrt{ 8 } = 2 2.828427$… ニヤニヤ呼ぶな

$\sqrt{ 10 } = 3 3,1622776.$……… 人丸は三色に並ぶや

この動画を見る 

ただの因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^{11}+x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+$
$x^3+x^2+x+1$
これを因数分解せよ.(実数係数)
この動画を見る 

簡単すぎる京大の入試問題!解けますか?【数学】【京都大学】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle ABC$において、$AB=2,AC=1$とする。$\angle BAC$の二等分線と辺$BC$の交点を$D$とする。$AD=BD$となるとき、$\triangle ABC$の面積を求めよ。

京都大過去問
この動画を見る 

福田の数学〜早稲田大学理工学部2025第2問〜領域に含まれる三角形の面積の最大値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$xy$平面上で、

連立不等式

$0\lt x \leqq 1,0\leqq y \leqq \log\dfrac{1}{x}$

で定まる領域と$y$軸の

$y\geqq 0$の部分を合わせた図形を$D$とする。

$D$に含まれる三角形の最大値を求めよ。

$2025$年早稲田大学理工学部過去問題
この動画を見る 

【数学Ⅰ】命題と集合 14分でまとめ(高1〜2で見ても意味わからんけど、高3にはハマるはず)

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅰ】命題と集合まとめ動画です
-----------------
(1) $x=2→x^2=4$の真偽は?

(2) $xy=0→x=0$または$y=0$の真偽は?

(3) $x$を実数とすると$x=1→x^3=1$の真偽は?
  $x$を複素数とすると$x=1→x^3=1$の真偽は?
この動画を見る 
PAGE TOP